Important Herbs in Ayurvedic Medicine

Ginger: An Ancient Panacea for Modern Times ( By Brenda Castro)

 INTRODUCTION

Known as vishwabheshaja, “the universal medicine”, ginger (zingiber officinale) has been a panacea for digestive, respiratory, and circulatory disorders for thousands of years.1,2  Ginger’s versatility is found in ancient Ayurvedic texts, international cuisine, and a broad spectrum of home remedies. With today’s advent of scientific research, ginger’s therapeutic constituents are being isolated and tested against some of the most common diseases. Not only has it been scientifically proven to aid in digestion, ginger has also shown anti-inflammatory, anti-carcinogenic, and anti-oxidant properties. This paper gives a brief background of ginger, its traditional Ayurvedic use, and its effectiveness in clinical trials.

HISTORY

Ginger is a perennial lily, indigenous to tropical Asia, though it has never been found growing in the wild. Even though its exact botanical origins are unknown, it plays a large role in the ancient traditions of Ayurveda, Unani, and Chinese Medicine. The flowering plant reaches heights “of 3 to 4 feet, *with+ leaves growing 6 to

12 inches long…[Its] flowers are white with purple streaks and grow in spikes.” 3  The medicinal portion used is the rhizome, or horizontal, underground stem. This fleshy, aromatic, firm, fibrous, and plump portion of the plant is how it

propagates itself, through its many knobby portions, and not through its sterile flowers. Today it grows throughout the world in tropical

Botanical Drawing of Zingiber officinale

A Modern Herbal, Mrs. M. Grieve, Ginger.  http://www.botanical.com/botanical/mgmh/g/ginger13.htm

climates, its unique flavor finding its way into signature dishes worldwide. 4 ,5,6

Whereas Indian, Chinese, and other Asian cuisines have used ginger for thousands of years, its unique qualities made it attractive to Europeans more recently, as an important ingredient along the spice trade routes. Ginger ale was popular in 19th century pubs, while ginger’s use in everything from baked goods, to salad dressings,

to exotic dishes continues in the western world.7,8  As KP Khalsa says, in the Way of Ayurvedic Herbs, “*g+inger is a

multi-purpose spice, equally delicious in both sweet and savory dishes.” He also mentions that, though “*h+erbs and spices are typically not significant sources of nutrients in the diet…ginger has [a] relatively high calcium and iron content.”9  Its addition to meals may therefore not only add flavor and medicinal properties, but valuable nutrients too.

AYURVEDIC INTERPRETATION

In Ayurveda, ginger’s rasa (taste) is pungent and sweet, its virya (energy) heating, and its vipāka, (post- digestive effect) sweet. Even though it has a pungent and heating, it is tonifying, as a sweet vipāka implies. As Pole explains in Ayurvedic Medicine, this sweet vipāka leaves a cooling, lasting effect. Through its warm virya, it subdues vāta and kāpha, while increasing pitta, though it is often found counter-balanced in pitta-reducing

remedies. As the “universal medicine,” it affects all dhātus (tissues) and specifically the digestive, respiratory, and circulatory srotas (channels). 10,11,12, 13

The Ayurvedic actions of ginger, as described by Pole include: Āmanāśaka (Destroys toxins), Pācana (Digestive), Chardinigrahaṇa (Prevents nausea), Hikkānigrahaṇa (Stops hiccups), Agni dῑpana (Enkindles the digestive fire), Grāhῑ (Absorbs fluids from the intestines), Arśoghna (Removes piles), Śitapraśamana (Reduces feelings of cold), Rasāyana (Rejuvenative), Kāsaśvāsahara (Alleviates cough and breathing difficulties), and Vedanāsthāpana (Alleviates pain).14  Its therapeutic uses are also found throughout the Materia Medica of Ayurveda and the Sushrut Samhita, mostly in formulas treating varying complaints.

WESTERN INTERPRETATION

In western herbal terminology, it is described as a stimulant, diaphoretic, expectorant, carminative, anti- emetic, analgesic, sialagogue, appetizer, anti-flatulent, anti-tussive, antimicrobial, hypolipidemic, anti-oxidant, anti-spasmodic, anti-atherosclerotic, cardiotonic, circulatory stimulant, and emmenagogue. Its indications include

digestive upset of all kinds, including nausea, indigestion, vomiting, belching, abdominal pain, gas, colic, and motion sickness. It can also be used for respiratory conditions, rheumatism, osteoporosis, gout, colds, flu, laryngitis, arthritis, hemorrhoids, headaches, heart disease, gas, “cramps in the abdomen, including menstrual cramps due to cold”15, migraines, lumbago, fever, and its fresh juice can even be used for burns. 16,17,18,19,20  With such a long list of actions and indications, it is no wonder it is referred to as “the universal medicine”.

ĀRDRAKA & ŚUṆṬHI

Ginger has many names across cultures, and even within Ayurveda. Most commonly, the fresh form is recognized as ārdraka (moist), and the dry rhizome as either śuṇṭhi or nagara, meaning “dry.” 21  Traditional Chinese Medicine also creates a distinction between these two forms of the rhizome, calling fresh ginger shen   jiang and dry ginger gan jiang.22,23  Scientific research confirms the difference between the properties of fresh and dried ginger. As the “volatile and diaphoretic essential oils β-sesquipphellandrene and zingiberene decompose on drying…*t+he warming gingerol principle transforms into shogoals…making it more centrally heating”. 24  “Gingerols have been reported to be responsible for the characteristic taste” of ginger. 25    “The gingerols have analgesic, sedative, antipyretic, antibacterial and gastrointestinal tract motility effects.26  As the most numerous chemical constituents of ginger, both gingerols and shogoals are some of the most researched compounds of ginger.

In The Yoga of Herbs, authors Frawley and Lad mention that “*f+resh ginger is a better diaphoretic, better for colds, cough, vomiting and for deranged Vāta.”27  In both the Materia Medica of Ayurveda and the Sushrut Samhita, ārdraka is touted for promoting a “good voice,” curing vibandha (constipation), ānāha (obstruction to the movement of wind in the stomach), and śúla (colic pain). It is said to be an effective “appetizer, aphrodisiac and cardiac tonic.”28,29 It is also found as part of a treatment for acute conditions, such as earache. 30

Frawley and Lad also state that the drying action and increased heat of dry ginger makes it “a better stimulant and expectorant for reducing Kapha and increasing Agni.” Śunthi is found in many kapha-reducing remedies throughout the Materia Medica, often combined with marica (black pepper) and pippalῑ (long pepper).31 Together the three herbs, combined into powder in equal portions, are commonly called Trikaṭu Cūrṇa, a heating,

stimulating, and toxin-reducing rasāyana for Kapha.32

APPLICATIONS & RESEARCH

DIGESTIVE SYSTEM

Ginger “warms the digestive system, [and] increases agni and the secretion of digestive enzymes. Fresh ginger especially benefits rasadhātvagni (agni of the rasa dhatu) while dry ginger clears āma and is better for kledaka kapha aggravations.”33  As Pole suggests, the two forms of ginger play different roles in digestion, but both help to warm and stimulate the process. Many randomized controlled trials (RCT) were performed on people to examine ginger’s effect on digestion. It is said that “*a+bout 40% of patients with functional dyspepsia have abnormally delayed gastric emptying.” 34  Therefore, two RCTs were done to “evaluate the effects of ginger on gastric motility and emptying, abdominal symptoms, and hormones that influence motility in dyspepsia”. 35

Patients who suffered from functional dyspepsia ingested either three ginger capsules totaling 1.2g, or a placebo. Gastric emptying was more rapid and antral contractions were more numerous in the experimental group, but the ginger “had no impact on gastrointestinal symptoms or gut peptides.” 36  The same study was done previously on healthy, asymptomatic volunteers to test the gastrointestinal effects of ginger. Again, the 1.2g of ginger accelerated gastric emptying while stimulating antral contractions. 37  In another RCT, adult respiratory distress syndrome (ARDS) patients, who were dependent on mechanical ventilation and fed via nasogastric tube, “showed that gastric feed supplementation with [120mg] ginger extract might reduce delayed gastric emptying and help reduce the incidence of ventilator-associated pneumonia in ARDS.” 38

Pole also mentions ginger’s effectiveness in nausea for motion sickness, morning sickness in pregnancy, and post-operative nausea.39 Ginger as a remedy for motion sickness was evaluated in an RCT, where the experimental group was pre-treated with ginger at 1g and 2g before being subject to circular vection. The study showed that “ginger reduces nausea, tachygastric activity, and vasopressin release induced by circular vection,” while delaying their onset and shortening the recovery time afterwards.40 Another RCT, evaluating the effectiveness of ginger on motion sickness, was performed on “eighty naval cadets, unaccustomed to sailing in heavy seas”. 1g of “ginger root reduced the tendency to vomiting and cold sweating significantly better than placebo” and ingestion gave “remarkably fewer symptoms of nausea and vertigo,” though the latter “was not statistically significant.”41  One article explained that, “gingerols have been reported to be responsible for…many pharmacological activities including motion sickness”. They are thought to work directly “on the gastrointestinal tract rather than…on the central nervous system.”42

Studies show that ginger’s anti-emetic properties can benefit patients in a variety of circumstances. In a guide for pre-natal care from London, the authors referred to three RCTs that demonstrate the alleviation of  nausea and vomiting in pregnancy with the use of ginger. After taking 250 mg of ginger, four times a day, pregnant women displayed less severe nausea and fewer instances of vomiting over those in the control group. In another RCT mentioned in the report, patients ingesting 1 tbsp. of ginger syrup in 4 to 8 fluid oz., four times a day, showed a relief in nausea and less vomiting than those in the placebo group. 43 Ginger was also found to be effective in a review of RCTs concerning post-operative nausea and vomiting. The analysis demonstrated “that a fixed dose *of+ at least 1 g of ginger is more effective than placebo for the prevention of [24-hour] postoperative nausea and vomiting *PONV+.”44  In clinical trials for patients with Chemotherapy-induced nausea and vomiting (CINV), ginger again proved to be a valuable anti-emetic. “Ginger root powder was effective in reducing severity of acute and delayed CINV as additional therapy to ondensetron and dexamethasone in patients receiving high emetogenic chemotherapy”. 45  Thus, the ancient tradition of using ginger to reduce nausea by stimulating digestion has been proven successful in clinical trials.

In addition to aiding in the general digestive process, it exhibits cholagogic effects, with its chief pungent principles, [6]-gingerol and [10]-gingerol, being most responsible. 46  While ginger stimulates bile production, it is also hepato-protective. A study using an aqueous ethanol extract of ginger concluded that it works either by preventing the decline of hepatic antioxidant status or due to its direct radical scavenging capacity.47  Another experiment compared the hepato-protective property of 6-gingerol against the standard drug silymarin, and found them to by comparable.48

Even though it is heating in virya, ginger has even been shown to be beneficial in the treatment of experimental ulcers. It stimulates defensive mucin (a constituent of mucous) production slightly more than the offensive acid-pepsin secretions. The isolated compound 6- gingesulphonic acid proved more effective in anti- ulcer activity than 6- gingerol and 6-shogaol, perhaps due to weaker pungency.49  A study on ulcer-induced rats “clearly demonstrated that aqueous extract of ginger was able to protect the gastric mucosa from stress-induced mucosal lesions and inhibits gastric acid secretion probably by blocking H+, K+-ATPase action, inhibiting growth of H. pylori and offering anti-oxidant protection against oxidative stress-induced gastric damage.” 50  Ginger also assists in the treatment of ulcers through antibacterial actions, as found by a Nigerian study:

Ginger’s antibacterial ‘power' is effective against preventing numerous intestinal problems that take place as a result of the alteration of the intestinal flora. This is ideal to avoid the formation of ulcers by eliminating the Helicobacter pylori, a bacterium whose secretions of ammonia are responsible for many ulcers, especially those of the duodene, and for other stomach problems like gastritis, since the plant is able to neutralize the excess of gastric acid that is another of the causes that favours the formation of ulcers.51

ANTI-MICROBIAL

“Its gingerol-related components have been reported to possess antimicrobial and antifungal properties, as well as several pharmaceutical properties.” 52    The aforementioned Nigerian study demonstrated the effectiveness of the anti-bacterial properties of ginger against digestive pathogens. Various extracts, ranging from ethanolic to raw juice, to hot and cold water, exhibited varying effectiveness at different concentrations.  “*T+he cold-water extract of ginger inhibited both Escherichia coli and Salmonella typhi at all concentrations,” while the “ethanolic extract of ginger gave the widest zone of inhibition” against Salmonella typhi. In other studies referenced by the authors, “ginger extract and its pungent compounds demonstrated greater [than those of onion] antibacterial activity against a variety of bacterial species including Helicobacter pylori, Staphylococcus aureus, Pseudomonasaeruginosa and Escherichia coli, although mixed result is attributed to different ginger preparations and varying strength.”53 Pole confirms ginger’s antibacterial actions against Escherichia coli and adds its effectiveness against Shigella bacillus.54 

Ginger’s antimicrobial actions go beyond digestive pathogens. As some bacteria grow resistant to pharmaceuticals, such as Acinetobacter baumannii (XDRAB) has, scientific studies turn to ginger as a potential aid. When combined with tetracycline, four components of ginger, [6]-dehydrogingerdione, [10]-gingerol, [6]-shogaol and [6]-gingerol, exhibited antibacterial actions against XDRAB, and modulated resistance to the drug. Results of the experiment also showed that antioxidants within the compounds aided the antimicrobial actions. 55A research article in Phytotherapy Research sought to explore the anti-bacterial actions of ginger, and its isolated components, on oral pathogens related to periodontitis. Ethanol and n-hexane extracts of ginger showed anti- bacterial actions, while the isolated constituents [10]-gingerol and [12]-gingerol, also inhibited the growth of, and killed the three strains of bacteria in the experiment.56

ANTI-INFLAMMATORY

Ginger is gaining more and more recognition for its anti-inflammatory actions. While Ayurveda has long- touted its benefits, contemporary research studies are now proving which constituents are most responsible, and how they work.  From an Ayurvedic perspective, Pole states, “*d+ry ginger is used as an āma-clearing, śleṣaka kapha-reducing, toxin-digesting, anti-inflammatory in arthritis (āma-vāta) in many traditional ayurvedic formulas, e.g. triphala guggul, yograj guggul.” He goes on to mention that, “despite its ‘warm’ energy it also inhibits the activity of inflammatory prostaglandins.” 57

As a relative of turmeric, ginger shares many of its functions. One study found ginger’s active constituents to act much like turmeric’s in affecting inflammation, oxidative damage, and “fighting the ravages of aging and degenerative diseases.” It did so by influencing:

some endocrine gland functions, and signal pathways involved to mediate their actions. With some systems and adipose tissue, ginger and turmeric exert their actions through some/all of the following signals or molecular mechanisms: (1) through reduction of high levels of some hormones (as: T4, leptin) or interaction with hormone receptors; (2) by inhibition of cytokines/adipokine expression; (3) acting as a potent inhibitor of reactive oxygen species (ROS)- generating enzymes, which play an essential role between inflammation and progression of diseases; (4) mediation of their effects through the inhibition of signaling transcription factors; and/or (5) decrease the proliferative potent by down-regulation of antiapoptotic genes, which may suppress tumor promotion by blocking signal transduction pathways in the target cells. 58

Today, scientists look to some of the key enzymes within the body to understand the mechanism behind ginger’s anti-inflammatory properties. Actions from Cyclooxygenase-1 (COX-1) enzymes produce hormone-like prostaglandins that protect the digestive tract from acids and assist in essential blood clotting.  COX-2 enzymes play a direct role in the production of prostaglandins that protect the body after injury, creating inflammation.

Non-steroidal anti-inflammatory drugs (NSAIDS), such as aspirin and ibuprofen, are often used to both reduce inflammation, and the associated pain. By acting on COX-2 and often COX-1 enzymes, NSAIDS reduce the prostaglandins produced, and “may irritate the stomach’s lining and cause digestive upset, peptic ulcers, and bleeding in the digestive tract.” 59  One research paper summarized research on ginger, and what the findings have meant for pharmacology:

The original discovery of ginger's inhibitory effects on prostaglandin biosynthesis in the early 1970s has been repeatedly confirmed. This discovery identified ginger as an herbal medicinal product that shares pharmacological properties with non-steroidal anti-inflammatory drugs. Ginger suppresses prostaglandin synthesis through inhibition of cyclooxygenase- 1 and cyclooxygenase-2. An important extension of this early work was the observation that ginger also suppresses leukotriene biosynthesis by inhibiting 5-lipoxygenase. This pharmacological property distinguishes ginger from nonsteroidal anti-inflammatory drugs. This discovery preceded the observation that dual inhibitors of cyclooxygenase and 5-lipoxygenase may have a better therapeutic profile and have fewer side effects than non-steroidal anti-inflammatory drugs. The characterization of the pharmacological properties of ginger entered a new phase with the discovery that a ginger extract (EV.EXT.77) derived from Zingiber officinale (family Zingiberaceae) and Alpina galanga (family Zingiberaceae) inhibits the induction of several genes involved in the inflammatory response. These include genes encoding cytokines, chemokines, and the inducible enzyme cyclooxygenase-2. This discovery provided the first evidence that ginger modulates biochemical pathways activated in chronic inflammation. Identification of the molecular targets of individual ginger constituents provides an opportunity to optimize and standardize ginger products with respect to their effects on specific biomarkers of inflammation.60

Many studies have since been done on the various components in ginger, examining the effectiveness on inflammation. In an in-vitro study of 6-shogaol, and 6-, 8-, and 10-gingerols, the compounds were evaluated for their antioxidant and anti-inflammatory efficacy. “6-Shogaol has exhibited the most potent antioxidant and anti- inflammatory properties which can be attributed to the presence of alpha,beta-unsaturated ketone moiety. The carbon chain length has also played a significant role in making 10-gingerol as the most potent among all the gingerols.”61  As some of the most-studied components of ginger, shogaols and gingerols do not act alone. A scientific study compared a “crude dichloromethane ginger extract, which also contained essential oils and more polar compounds”, to a compound containing only gingerols and their derivatives. The crude extract had significantly more anti-arthritic effects on arthritis-induced rats, reducing both joint inflammation and destruction. This research revealed that gingerols are more effective in treating arthritis when working synergistically with other components naturally found in ginger.62

Another scientific study used methanol extracts of ginger roots, to isolate the components, 10-gingerol, 8- shogaol and 10-shogaol. They inhibited cyclooxygenase-2, COX-2, but not COX-1. The report reiterates that the “inhibition of COX-1 is associated with gastrointestinal irritation,” and goes on to explain that “selective inhibition of COX-2 should help minimize this side effect.” 63  Thus, ginger’s use over common NSAIDS may have less side effects in the digestive tract.  The study involving the “standardized and highly concentrated extract of 2 ginger species, Zingiber officinale and Alpinia galanga (EV.EXT 77),” showed a “statistically significant” reduction of symptoms in patients with osteoarthritis (OA) of the knee. Since only “mild GI adverse events *occurred+ in the ginger extract group, it was concluded to have a “good safety profile.”64  In a smaller experiment, a limited number of patients used ginger compresses on their kidneys to manage the symptoms of osteoarthritis. They explained that “warmth penetrated through the entire self, activating deep relaxation, [and that] total relaxation of the self enabled release of tension and improved receptivity towards others. Additionally, interest in the outer world increased as the self felt more mobile and energized.” This alternative treatment to arthritis enabled them to overcome some of the other symptoms that many arthritis patients face, such as “psychological distress, social isolation and general inability to cope” as well as pain.65  In one study, 6-shogaol expressed its usual anti- inflammatory capabilities, but the study examined them within cells of the central nervous system. By mediating microglial activation, which results in neuronal cell death, “6-shogaol is an effective therapeutic agent for treating *and possibly preventing+ neurodegenerative diseases.”66  Ginger exhibits actions across a widespread spectrum of inflammatory conditions.

RESPIRATORY SYSTEM

Though not as many clinical research studies have examined ginger’s effects on the respiratory system, its use in Ayurveda for respiratory complaints is well known. As a kāsaśvāsahara, it is known for alleviating cough and breathing difficulties. As Pole also mentions, fresh ginger’s stimulating effects on peripheral circulation, vasodilation, and sweating may contribute to its ability to clear colds.  As the āma clears from the rasa and rakta, kapha-vāta coughs and colds are reduced. Combined with different herbs, ginger’s many actions can be tailored to the symptoms at hand. With cinnamon and lemongrass, it can induce sweating for a cold. For a high kapha-vata cough, vasa and pippali may be more helpful. As part of trikatu, it can also aid kapha respiratory complaints while accelerating slugglish digestion. 67

According to the Merck Manual of Medical Information, asthma is becoming more common, more serious, and is even resulting in more deaths annually. As explained in the Manual, “airways narrow –usually reversibly—in response to certain stimuli”. While one muscle layer spasms, another becomes inflamed, leading to the excessive production of mucous, which may further lead to an obstruction of the airway. 68    Recurring attacks over a long-period of time, may lead to airway remodeling, a “permanent narrowing of the bronchial tubes.”69

Ginger has been proven effective with asthma, as an anti-inflammatory, anti-hypersecretory, and even helping to repair the body after attack. Using an aqueous methanolic crude extract of ginger, one study found it to inhibit airway contraction through its anti-inflammatory properties.70  Perhaps it did this by reducing interleukin-1 secretion, as a German research paper found it to do, in human bronchial epithelial cells. The authors went on to propose “that distinct ginger compounds could be used as anti-inflammatory drugs in respiratory infections,” such as those in asthmatic patients.71  It can also repair the body after harmful inflammation. A Taiwanese study found that “inflammatory cytokines, which are produced by the bronchial epithelium after exposure to phthalate esters [ingredient in many plastics]…contribute to airway remodeling”. The research went on to demonstrate that “ginger reverses phthalate ester-mediated airway remodeling.”72  Research from South Korea proved [6]- Gingerol’s anti-hypersecretory abilities in relation to human airway epithelial cells.73  Thus, ginger can help reduce inflammation, secretions, and even long-term destruction related to asthma, and thus help in many stages of the disease.

ANTI-CARCINOGENIC

In cultured cell studies and experiments with animals, ginger’s pungent principles (gingerols, shogaols, paradols, and zingerone) have proven to possess anti-carcinogenic properties that may be both chemopreventive and chemotherapeutic. 74  These “cancer preventive activities are supposed to be mainly due to free radical scavenging, antioxidant pathways, alteration of gene expressions, and induction of apoptosis, all of which contribute towards decrease in tumor initiation, promotion, and progression.”75  6-Gingerol assisted the apoptic pathway in gastric cancer cells by enhancing the TRAIL-induced viability reduction of the cells. 6-Shogaol damaged microtubules of the cancer cells, halting their reproduction and thus reducing their ability to reproduce. 76 In breast cancer cells, 6-gingerol has been found to inhibit “cell adhesion, invasion, motility and activities”.

The rate of inhibition was dose-dependent, increasing as the concentration of ginger compounds increased.77  In  an experiment from the National University of Singapore, the isolated constituents, 6-, 8- and 10-shogaol, were shown to “have an inhibitory effect on induced breast cancer cell invasion,” without creating cytotoxic  conditions.78  One study explained the method by which ginger reduced the incidence of liver neoplasms and “the risk of subsequent carcinoma”. In liver cancer cells, NF-κB is constitutively activated and…blocking NFκB activation with ginger resulted in suppressed production of *inflammatory markers+ NFκB and TNF-α. This is in line with findings that many of the pathways that mediate adaptive survival strategies in cancer cells are under the transcriptional control of NFκB. Thus, the ginger extract may have a chemotherapeutic effect in the treatment of liver cancer. 79

Researchers from the University of Minnesota referenced many experiments comparing the effectiveness of gingerols and shogaols in cancer inhibition. As the two constituents are those most prevalent in ginger, they were predominantly examined, although other components were also evaluated. With effectiveness varying with the compound, the constituents were successful against a broad spectrum of cancer cells, including human lung, leukemia, skin, ovarian, and colon cancer cells, as well as mouse skin and lung cancer cells.80

CARDIOVASCULAR SYSTEM

Ginger’s many actions show widespread potential in cardiovascular disease as well. In one study, ginger’s ability to increase body temperature was scientifically examined. It was found that gingerols and shogaols activated transient receptor potential vanilloid subtype 1 (TRPV1), which detects and regulates body temperature. The pungent constituents also increased adrenaline secretion, which heats the body.81  Describing it as a śitapraśamana, Ayurveda has known of its ability to reduce feelings of cold. Pole explains that, Ayurvedically, “*d+ry ginger may be of benefit in cardiac disorders due to increasing circulation and potential blood-thinning properties when used at a high dosage”.82  In combination with the herbs arjuna and guggulu, it treats congestive heart conditions and poor circulation.83

An article from the International Journal of Cardiology, explains, “*h+uman trials have been few and generally used a low dose with inconclusive results, however dosages of 5g or more demonstrated significant anti- platelet activity…Should *more human trials+…prove positive, ginger has the potential to offer not only a cheaper natural alternative to conventional agents but one with significantly lower side effects.”84  In an in-vitro  experiment comparing synthetic gingerols with aspirin, the gingerols and related analogues inhibited human platelet activation at the same potency, or greater than that of aspirin, depending on the analogue.85

Using an orally-administered, aqueous extract of ginger with rats, high doses of the extract (500mg/kg) lowered prostaglandin, thromboxane (blood-clotting substances), and cholesterol levels. “These results suggest that ginger could be used as a cholesterol-lowering, antithrombotic and anti-inflammatory agent.”86  In another study, test rabbits were fed cholesterol for 75 days, and thus were induced with atherosclerosis. After ingesting experimental doses of air dried ginger powder, at 0.1g/kg of body weight, for 75 days, atheroma was reduced by half. Evidence of anti-oxidation was evident in decreased lipid peroxidation, and an increase in fibrinolytic activity meant that wound-healing capabilities also increased. “However, ginger did not lower blood lipids to any significant extent. This distinct protection from the development of atherosclerosis by ginger is probably because of its free radical scavenging, prostaglandin inhibitory and fibri properties.”87

DOSAGES

Author or Research Study Dosage
ARDS, Gastric Emptying RCT 120 mg, gastric feed supplementation with ginger extract88
Lad & Frawley 250 to 500mg powder89
Morning Sickness RCT 250mg, 4 times a day90,
Seasickness RCT 1gm91
Post-Operative Nausea & Vomiting RCT 1gm92
Circular Vection RCT 1-2gm 93
Lust ½ tsp., or about 2.2gm, powdered root, as tea94
Gastric Emptying, RCT 1.2gm total, in 3 capsules95
Pole 1.5-5gm per day (fresh) 1-2gm per day (dry)96
Khalsa 500mg per day, capsule, tea, juice or in food97 As desired, in food, or up to 3gm per day, in capsules 1tsp., chopped fresh root, as tea, 3 times per day98
Reid 3-8gm99
Tierra 3-9gm dried, 2-6 slices of fresh root as tea100
Landis 2 to 5 capsules per day, or about 1.5 to 3.7gm101
Anti-Platelet Studies  5gm or more102

CONCLUSION

Ginger’s versatility expands in all directions. As a seasoning, it spans continents, finding its way through Thai, Indian, Chinese, and other Asian cuisines, and into western baked goods, ales, and sauces. As a supplement, it provides valuable minerals, bridging the gap between diet and medicine. Therapeutically, it works on many conditions, operating synergistically to bring balance through various modalities. Many of the Ayurvedic uses and terms associated with ginger are being proven in today’s laboratories and clinical trials.

Its aid in digestion is widespread, working to initiate (agni dῑpana) and stimulate (pācana) the process, prevent nausea and vomiting (chardinigrahaṇa), treat ulcers, and inhibit harmful bacteria and fungi. It does all this while stimulating, and protecting the liver. It also simultaneously aids in inflammatory and cancerous conditions.  By affecting hormone processes, and other biochemical pathways, harmful gene expression, reactive oxygen species, and free-radical scavenging (āmanāśaka), it reduces inflammation and carcinogenic activity at the same time.

This simultaneously allows it to be a preventative, pain reliever (vedanāsthāpana), and rasāyana to damaged tissues. The remarkable thing about ginger is that these tissues can range from an arthritic and degenerated joint, to an obstructed airway, to an organ recovering from cancer. As if that was not enough, ginger also enhances cardiovascular health. In a modern-day, mostly sedentary society, with more and more high cholesterol and heart related diseases, ginger’s assistance is more than welcome. As a food with a long-history of use throughout the world, its harmful side effects are minimal, especially when compared to many pharmaceuticals. In a gavage safety assessment of ginger, rats were given excessive amounts of ginger, (2000mg/kg), but displayed no harmful abnormalities or mortalities, except for a slight decrease in weight of the testes.103  Though its dosage varies according to use, author, mode of extraction, and research study, it is still relatively safe, even if taken in excess.

Thus, ginger has proven to be the vishwabheshaja, “the universal medicine”, not only through time in ancient medical systems, but also through modern-day clinical and experimental research for some of today’s most common diseases.

ABSTRACTS OF ARTICLES CITED 

(in order of citation)

R.K. Goel, and K. Sairam. “Anti-Ulcer Drugs from Indigenous Sources with Emphasis on Musa Sapientum, Tamrabhasma, Asparagus Racemosus, and Zingiber Officinale,” Indian Journal of Pharmacology 34 (2002): 100-110.

Sula, Parinamasula and Amlapitta are clinical entities recognized by ayurveda, akin to peptic ulcer and functional dyspepsia. Many indigenous drugs have been advocated in ayurveda for treatment of dyspepsia. Our laboratory has been engaged in screening of various indigenous herbal and metallic drugs for their potential use in peptic ulcer diseases, taking lead from Ayurveda and have reported anti-ulcer and ulcerhealing properties of Tectona grandis (lapachol), Rhamnus procumbens (kaempferol), Rhamnus triquerta (emodin), Withania somnifera (acylsteryl glycoside), Shilajit (fulvic acid and carboxymethoxybiphenyl), Datura fastuosa (withafastuosin E), Fluggea microcarpa and Aegle marmelos (pyrano- and iso- coumarins) etc., along with their mechanism of action. The present article includes the detailed exploration of ulcer protective and healing effects of unripe plantain banana, tambrabhasma and Asparagus racemosus on various models of experimental gastroduodenal ulceration and patients with peptic ulcer. Their effects on mucin secretion, mucosal cell shedding, cell proliferation, anti-oxidant activity, glycoproteins, and PG synthesis have been reported. Clinical trials of these drugs for evaluating their potential ulcer healing effects in peptic ulcer patients have been done. Their potential ulcer protective effects both, experimental and clinical seemed to be due to their predominant effects on various mucosal defensive factors rather than on the offensive acid-pepsin secretion. Thus, the above herbal / herbo-mineral drugs do have potential usefulness for treatment of peptic ulcer diseases.

NC Azu, and RA Onyeagba, “Antimicrobial Properties Of Extracts Of Allium cepa (Onions) And Zingiber officinale (Ginger) On Escherichia coli, Salmonella typhi And Bacillus subtilis.” The Internet Journal of Tropical Medicine 3.2 (2007). http://www.ispub.com/journal/the-internet-journal-of-tropical-medicine/v... number-2/antimicrobial-properties-of-extracts-of-allium-cepa-onions-and-zingiber-officinale-ginger-on- escherichia-coli-salmonella-typhi-and-bacillus-subtilis.html

The antimicrobial properties of various extracts of Allium cepa (onions) and Zingiber officinale (ginger) against Escherichia coli, Salmonella typhi and Bacillus subtilis that are common cause of gastrointestinal tract infections were investigated using the cup-plate diffusion method. The result obtained revealed that ethanolic extract of ginger gave the widest zone of inhibition against two out of the three test organisms at the concentration of 0.8gml-1. However, Escherichia coli and Salmonella typhi were more sensitive to the extract of onion bulbs compared to Bacillus subtilis which was predominantly resistant. It was also observed that the solvent of extraction and its varying concentrations affected the sensitivity of two of the test organisms to the plant materials. The minimum inhibitory concentration (MIC) of ginger extracts on the test organisms ranged from 0.1gml-1 - 0.2gml-1, showing that ginger was more effective and produced remarkable inhibitory effect on the two out of the three test organisms when compared to the onion extracts. This investigation indicates that, though both plants had antimicrobial activities on the two gram negative test organisms but not effective on the gram positive test organism, ginger had more inhibitory effect thus confirming their use in folk medicine.

Seng-Kee Chuau, et.al, “Effect of Ginger on Gastric Motility and Symptoms of Functional Dyspepsia,” World Journal of Gastroenterology 17.1 (2011):105-110.

AIM: To evaluate the effects of ginger on gastric motility and emptying, abdominal symptoms, and hormones that influence motility in dyspepsia.

METHODS: Eleven patients with functional dyspepsia were studied twice in a randomized double-blind manner. After an 8-h fast, the patients ingested three capsules that contained ginger (total 1.2 g) or placebo, followed after 1 h by 500 mL low-nutrient soup. Antral area, fundus area and diameter, and the frequency of antral contractions were measured using ultrasound at frequent intervals, and the gastric half-emptying time was calculated from the change in antral area. Gastrointestinal sensations and appetite were scored using visual analog questionnaires, and blood was taken for measurement of plasma glucagon-like peptide-1 (GLP-1), motilin and ghrelin concentrations, at intervals throughout the study.

RESULTS: Gastric emptying was more rapid after ginger than placebo [median (range) half-emptying time 12.3 (8.5- 17.0) min after ginger, 16.1 (8.3-22.6) min after placebo, P ≤ 0.05+. There was a trend for more antral contractions (P = 0.06), but fundus dimensions and gastrointestinal symptoms did not differ, nor did serum concentrations of GLP-1, motilin and ghrelin.

CONCLUSION: Ginger stimulated gastric emptying and antral contractions in patients with functional dyspepsia, but had no impact on gastrointestinal symptoms or gut peptides.

SK Chuau, et al., “Effect of Ginger on Gastric Emptying and Motility in Healthy Humans,” European Journal of Gastroenterology and Hepatology 20.5 (2008):436-440.

OBJECTIVE:

Ginger has been reported to improve upper gastrointestinal symptoms. Little information about the effects of ginger on gastric motor function, exists, however. Our aim was to investigate the effects of ginger on gastric emptying, antral motility, proximal gastric dimensions, and postprandial symptoms.

METHODS:

Twenty-four healthy volunteers were studied twice in a randomized double-blind manner. After an 8 h fast, the volunteers ingested three ginger capsules (total 1200 mg) or placebo, followed after 1 h by 500 ml low-nutrient soup. Antral area, fundus area and diameter, and the frequency of antral contractions were measured using ultrasound at frequent intervals over 90 min, and the gastric half-emptying time was calculated from the change in antral area. Gastrointestinal sensations and appetite were scored using visual analog questionnaires. Data are expressed in terms of mean+/-standard error.

RESULTS:

Antral area decreased more rapidly (P<0.001) and the gastric half-emptying time was less after ginger than placebo ingestion (13.1+/-1.1 vs. 26.7+/-3.1 min, P<0.01), whereas the frequency of antral contractions was greater (P<0.005). Fundus dimensions did not differ, and there was no significant difference in any gastrointestinal symptoms.

CONCLUSION:

Ginger accelerates gastric emptying and stimulates antral contractions in healthy volunteers. These effects could potentially be beneficial in symptomatic patient groups.

M. Mokhtari, et al., “Ginger extract reduces delayed gastric emptying and nosocomial pneumonia in adult respiratory distress syndrome patients hospitalized in an intensive care unit,” Journal of Critical Care 25.4 (2010):647-650.

PURPOSE:

The purpose of this study was to evaluate the effect of ginger extract on delayed gastric emptying, developing ventilator-associated pneumonia, and clinical outcomes in adult respiratory distress syndrome (ARDS).

MATERIALS AND METHODS:

Thirty-two ARDS patients who were dependent on mechanical ventilation and fed via nasogastric tube were studied. After enrollment, patients were randomized to 2 groups. The control group received 1 g of coconut oil as placebo, and the study group received 120 mg of ginger extract. The amount of feeding tolerated at the first 48 hours of feeding, amount of feeding tolerated during the entire study period, nosocomial pneumonia, number of intensive care unit (ICU)-free days, number of ventilator-free days, and mortality were evaluated during 21 days of intervention.

RESULTS:

There was a significant difference between the ginger group and the control group in the amount of feeding tolerated at the first 48 hours of enteral feeding (51% vs 57%, P < .005). There was a trend toward a decrease in pneumonia in the ginger group (P = .07). The overall in-ICU mortality was 15.6%, with no significant difference in the 2 groups. The number of ventilator-free days and that of ICU-free days were lower in the control group compared with the ginger group (P = .04 and P = .02).

CONCLUSION:

This study showed that gastric feed supplementation with ginger extract might reduce delayed gastric emptying and help reduce the incidence of ventilator-associated pneumonia in ARDS.

Owyang Chung, et al., “Effects of ginger on motion sickness and gastric slow-wave dysrhytmias induced by circular vection,” American Journal of Physiology 284.3 (2003):G481-G489.

Ginger has long been used as an alternative medication to prevent motion sickness. The mechanism of its action, however, is unknown. We hypothesize that ginger ameliorates the nausea associated with motion sickness by preventing the development of gastric dysrhythmias and the elevation of plasma vasopressin. Thirteen volunteers with a history of motion sickness underwent circular vection, during which nausea (scored 0–3, i.e., none to severe), electrogastrographic recordings, and plasma vasopressin levels were assessed with or without ginger pretreatment in a crossover-design, double-blind, randomized placebo-controlled study. Circular vection induced a maximal nausea score of 2.5 ± 0.2 and increased tachygastric activity and plasma vasopressin. Pretreatment with ginger (1,000 and 2,000 mg) reduced the nausea, tachygastria, and plasma vasopressin. Ginger also prolonged the latency before nausea onset and shortened the recovery time after vection cessation. Intravenous vasopressin infusion at 0.1 and 0.2 U/min induced nausea and increased bradygastric activity; ginger pretreatment (2,000 mg) affected neither. Ginger effectively reduces nausea, tachygastric activity, and vasopressin release induced by  circular vection. In this manner, ginger may act as a novel agent in the prevention and treatment of motion sickness.

Torben Brask, et al., “Ginger Root Against Seasickness: A Conctrolled Trial on the Open Sea,” Acta Oto- laryngologica 105.1-2 (1988):45-49.

In a double-blind randomized placebo trial, the effect of the powdered rhizome of ginger (Zingiber officinale) was tested on seasickness. Eighty naval cadets, unaccustomed to sailing in heavy seas reported during voyages on the high seas, symptoms of seasickness every hour for 4 consecutive hours after ingestion of 1 g of the drug or placebo. Ginger root reduced the tendency to vomiting and cold sweating significantly better than placebo did (p<0.05). With regard to vomiting, a modified Protection Index (PI)=72% was calculated. Remarkably fewer symptoms of nausea and vertigo were reported after ginger root ingestion, but the difference was not statistically significant. For all symptom categories, PI=38% was calculated.

N Chaiyakunapruk, et al., “The efficacy of ginger for the prevention of postoperative nausea and vomiting: a meta- analysis,” American Journal of Obstetrics and Gynecology 194.1 (2006):95-99.

OBJECTIVE: The aim of this study was to specifically determine the impact of a fixed dose of ginger administration, compared with placebo, on the 24-hour postoperative nausea and vomiting.

STUDY DESIGN: The design was a systematic review and metaanalysis of trials revealed by searches. Randomized controlled trials comparing ginger with placebo to prevent postoperative nausea and vomiting and postoperative vomiting from Medline, IPA, CINAHL, Cochrane CENTRAL, HealthStar, Current Contents, bibliographies of retrieved articles, contact of authors, and experts in the field. Two reviewers selected studies for inclusion and independently extracted data.

RESULTS: Five randomized trials including a total of 363 patients were pooled for analysis of preventing postoperative nausea and vomiting and postoperative vomiting. The summary relative risks of ginger for postoperative nausea and vomiting and postoperative vomiting were 0.69 (95% confidence interval 0.54 to 0.89) and 0.61 (95% confidence interval 0.45 to 0.84), respectively. Only one side effect, abdominal discomfort, was reported.

CONCLUSIONS: This meta-analysis demonstrates that a fixed dose at least 1 g of ginger is more effective than placebo for the prevention of postoperative nausea and vomiting and postoperative vomiting. Use of ginger is an effective means for reducing postoperative nausea and vomiting.

Y.K. Gupta, et al., “Anti-emetic effect of ginger powder versus placebo as an add-on therapy in children and young adults receiving high emetogenic chemotherapy,” Pediatric Blood & Cancer 56.2 (2011):234-238.

PURPOSE:

Chemotherapy-induced nausea and vomiting (CINV) are major adverse effects of chemotherapy. Ginger has been used in postoperative and pregnancy-induced nausea and vomiting. Data on its utility in reducing CINV in children and young adults are lacking.

PATIENTS AND METHODS:

Sixty chemotherapy cycles of cisplatin/doxorubicin in bone sarcoma patients were randomized to ginger root powder capsules or placebo capsules as an additional antiemetic to ondensetron and dexamethasone in a double- blind design. Acute CINV was defined as nausea and vomiting occurring within 24 hr of start of chemotherapy (days 1-4) and delayed CINV  as that occurring  after 24 hr of completion of chemotherapy (days 5-10). CINV was evaluated as per Edmonton's Symptom Assessment Scale and National Cancer Institute criteria respectively.

RESULTS:

Acute moderate to severe nausea was observed in 28/30 (93.3%) cycles in control group as compared to 15/27 (55.6%) cycles in experimental group (P = 0.003). Acute moderate to severe vomiting was significantly more in the control group compared to the experimental group [23/30 (76.7%) vs. 9/27 (33.33%) respectively (P= 0.002)]. Delayed moderate to severe nausea was observed in 22/30 (73.3%) cycles in the control group as compared to 7/27 (25.9%) in the experimental group (P < 0.001). Delayed moderate to severe vomiting was significantly more in the control group compared to the experimental group [14/30 (46.67%) vs. 4/27 (14.81%) (P = 0.022)].

CONCLUSION:

Ginger root powder was effective in reducing severity of acute and delayed CINV as additional therapy to ondensetron and dexamethasone in patients receiving high emetogenic chemotherapy.

T Chisaka, et al., “Cholagogic effect of ginger and its active constituents,” Journal of ethnopharmacology 13.2 (1985):217-25.

The effect of bile secretion in rats was examined in order to clarify the stomachic action of ginger and also to investigate its active constituents. The results showed that mainly the acetone extracts of ginger, which contain essential oils and pungent principles, caused an increase in the bile secretion. Further analyses for the active constituents of the acetone extracts through column chromatography indicated that [6]-gingerol and [10]-gingerol, which are the pungent principles, are mainly responsible for the cholagogic effect of ginger.

T.A. Ajith, et al., “Zingiber officinale Roscoe prevents acetaminophen-induced acute hepatotoxicity by enhancing hepatic antioxidant status,” Food and Chemical Toxicology 45.11 (2007): 2267-2272.

A large number of  xenobiotics are reported to be potentially hepatotoxic. Free radicals generated from the xenobiotic metabolism can induce lesions of the liver and react with the basic cellular constituents – proteins, lipids, RNA and DNA. Hepatoprotective activity of aqueous ethanol extract of Zingiber officinale was evaluated against single dose of acetaminophen-induced (3 g/kg, p.o.) acute hepatotoxicity in rat. Aqueous extract of Z. officinale significantly protected the hepatotoxicity as evident from the activities of serum transaminase and alkaline phosphatase (ALP). Serum glutamate pyruvate transaminase (SGPT), serum glutamate oxaloacetate transaminase (SGOT) and ALP activities were significantly (p < 0.01) elevated in the acetaminophen alone treated animals. Antioxidant status in liver such as activities of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase and glutathione-S-transferase (GST), a phase II enzyme, and levels of reduced glutathione (GSH) were declined significantly (p < 0.01) in the acetaminophen alone treated animals (control group). Hepatic lipid peroxidation was enhanced significantly (p < 0.01) in the control group. Administration of single dose of aqueous extract of Z. officinale (200 and 400 mg/kg, p.o.) prior to acetaminophen significantly declines the activities of serum transaminases and ALP. Further the hepatic antioxidant status was enhanced in the Z. officinale plus acetaminophen treated group than the control group. The results of the present study concluded that the hepatoprotective effect of aqueous ethanol extract of Z. officinale against acetaminophen-induced acute toxicity is mediated either by preventing the decline of hepatic antioxidant status or due to its direct radical scavenging capacity.

Suresh Kumar, et al., “6-gingerol, an active ingredient of ginger, protects acetaminophen-induced hepatotoxicity in mice,” Journal of Chinese integrative medicine 9.11 (2011):1264-1269.

To investigate the hepatoprotective efficacy of 6-gingerol against acetaminophen-induced hepatotoxicity in mice. Mice were injected with a single dose of acetaminophen (900 mg/kg) to induce hepatotoxicity, while 6-gingerol (30 mg/kg) or the standard drug silymarin (25 mg/kg) was given 30 min after the acetaminophen administration. The mice were sacrificed 4 h after acetaminophen injection to determine the activities of liver marker enzymes such as aspartate aminotransferase (AST), alanine aminotransferase (ALT) and alkaline phosphatase (ALP), total bilirubin in serum, and lipid peroxidation and antioxidant status (superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase, glutathione transferase and glutathione) in liver homogenate. The treatment of 6-gingerol and silymarin to acetaminophen-induced hepatotoxicity showed significant hepatoprotective effect by lowering the hepatic marker enzymes (AST, ALT, and ALP) and total bilirubin in serum (P<0.05). In addition, 6-gingerol and silymarin treatment prevented the elevation of hepatic malondialdehyde formation and the depletion of antioxidant status in the liver of acetaminophen-intoxicated mice (P<0.05). The results evidently demonstrate that 6-gingerol has promising hepatoprotective effect which is comparable to the standard drug silymarin.

Harish Nayaka Mysore Annaiah, et al., “Gastroprotective Effect of Ginger Rhizome (Zingiber Officinale) Extract:   Role of Gallic Acid and Cinnamic Acid in H+, K+-ATPase/H. pylori Inhibition and Anti-Oxidative Mechanism,” Evidence –Based Complementary and Alternative Medicine 2011. (2011): 249487.

Zinger officinale has been used as a traditional source against gastric disturbances from time immemorial. The ulcer-preventive properties of aqueous extract of ginger rhizome (GRAE) belonging to the family Zingiberaceae is reported in the present study. GRAE at 200 mg kg−1 b.w. protected up to 86% and 77% for the swim stress-/ethanol stress-induced ulcers with an ulcer index (UI) of 50 ± 4.0/46 ± 4.0, respectively, similar to that of lansoprazole (80%) at 30 mg kg−1 b.w. Increased H+,  K+-ATPase activity  and thiobarbituric acid reactive substances (TBARS) were observed in ulcer-induced rats, while GRAE fed rats showed normalized levels and GRAE also normalized depleted/amplified anti-oxidant enzymes in swim stress and ethanol stress-induced animals. Gastric mucin damage was recovered up to 77% and 74% in swim stress and ethanol stress, respectively after GRAE treatment. GRAE also inhibited the growth  of  H.  pylori  with MIC  of 300 ±  38 μg and also possessed  reducing  power, free radical −1 scavenging ability with an IC50 of 6.8 ± 0.4 μg mL gallic acid equivalent (GAE). DNA protection up to 90% at 0.4 μg was also observed. Toxicity studies indicated no lethal effects in rats fed up to 5 g kg−1 b.w. Compositional analysis favored by determination of the efficacy of individual phenolic acids towards their potential ulcer-preventive ability revealed that between cinnamic (50%) and gallic (46%) phenolic acids, cinnamic acid appear to contribute to better H+, K+-ATPase and Helicobacter pylori inhibitory activity, while gallic acid contributes significantly to anti-oxidant activity.

M Park, et al., “Antibacterial activity of *10+-gingerol and [12]-gingerol isolated from ginger rhizome against periodontal bacteria,” Phytotherapy Research 22. (2008): 1446–1449.

Ginger (Zingiber officinale Roscoe) has been used widely as a food spice and an herbal medicine. In particular, its gingerol-related components have been reported to possess antimicrobial and antifungal properties, as well as several pharmaceutical properties. However, the effective ginger constituents that inhibit the growth of oral bacteria associated with periodontitis in the human oral cavity have not been elucidated. This study revealed that the ethanol and n-hexane extracts of ginger exhibited antibacterial activities against three anaerobic Gram- negative bacteria, Porphyromonas gingivalis ATCC 53978, Porphyromonas endodontalis ATCC 35406 and Prevotella intermedia ATCC 25611, causing periodontal diseases. Thereafter, five ginger constituents were isolated by a preparative high-performance liquid chromatographic method from the active silica-gel column chromatography fractions, elucidated their structures by nuclear magnetic resonance spectroscopy and electrospray ionization mass spectrometry and their antibacterial activity evaluated. In conclusion, two highly alkylated gingerols, [10]-gingerol and [12]-gingerol effectively inhibited the growth of these oral pathogens at a minimum inhibitory concentration (MIC) range of 6–30 µg/mL. These ginger compounds also killed the oral pathogens at a minimum bactericidal concentration (MBC) range of 4–20 µg/mL, but not the other ginger compounds 5-acetoxy-[6]-gingerol, 3,5- diacetoxy-[6]-gingerdiol and galanolactone.

CY Chen, et al., “Zingiber officinale (ginger) compounds have tetracycline-resistance modifying effects against clinical extensively drug-resistant Acinetobacter baumannii,” Phytotherapy Research 24.12 (2010):1825- 30.

Extensively drug-resistant Acinetobacter baumannii (XDRAB) is a growing and serious nosocomial infection worldwide, such that developing new agents against it is critical. The antimicrobial activities of the rhizomes from Zingiber officinale, known as ginger, have not been proven in clinical bacterial isolates with extensive drug- resistance. This study aimed to investigate the effects of four known components of ginger, [6]- dehydrogingerdione, [10]-gingerol, [6]-shogaol and [6]-gingerol, against clinical XDRAB.  All these compounds showed antibacterial effects against XDRAB. Combined with tetracycline, they showed good resistance modifying effects to modulate tetracycline resistance. Using the 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging method, these four ginger compounds demonstrated antioxidant properties, which were inhibited by MnO₂, an oxidant without antibacterial effects. After the antioxidant property was blocked, their antimicrobial effects were abolished significantly. These results indicate that ginger compounds have antioxidant effects that partially contribute to their antimicrobial activity and are candidates for use in the treatment of infections with XDRAB.

RA Al-Essa RA, et al., “Physiological and therapeutical roles of ginger and turmeric on endocrine functions,” The American Journal of Chinese Medicine 39.2 (2011): 215-31.

The natural product ginger (Zingiber officinale) has active constituents gingerol, Shogaol and Zerumbone, while turmeric (Curcuma longa) contains three active major curcuminoids, namely, curcumin, demethoxycurcumin, and bisdemethoxycurcumin. They have the same scientific classification and are reported to have anti-inflammatory and many therapeutic effects. This article reviews the physiological and therapeutic effects of ginger and turm eric on some endocrine gland functions, and signal pathways involved to mediate their actions. With some systems and adipose tissue, ginger and turmeric exert their actions through some/all of the following signals or molecular mechanisms: (1) through reduction of high levels of some hormones (as: T4, leptin) or interaction with hormone receptors; (2) by inhibition of cytokines/adipokine expression; (3) acting as a potent inhibitor of reactive oxygen species (ROS)-generating enzymes, which play an essential role between inflammation and progression of diseases;

(4) mediation of their effects through the inhibition of signaling transcription factors; and/or (5) decrease the proliferative potent by down-regulation of antiapoptotic genes, which may suppress tumor promotion by blocking signal transduction pathways in the target cells. These multiple mechanisms of protection against inflammation and oxidative damage make ginger and curcumin particularly promising natural agents in fighting the ravages of aging and degenerative diseases, and need to be paid more attention by studies.

Carmelita G. Frondoza, et al., “Ginger—An Herbal Medicinal Product with Broad Anti-Inflammatory Actions,”

Journal of Medicinal Food 8.2 (2005):125-132.

The anti-inflammatory properties of ginger have been known and valued for centuries. During the past 25 years, many laboratories have provided scientific support for the long-held belief that ginger contains constituents with antiinflammatory properties. The original discovery of ginger's inhibitory effects on prostaglandin biosynthesis in the early 1970s has been repeatedly confirmed. This discovery identified ginger as an herbal medicinal product that shares pharmacological properties with non-steroidal anti-inflammatory drugs. Ginger suppresses prostaglandin synthesis through inhibition of cyclooxygenase- 1 and cyclooxygenase-2. An important extension of this early work was the observation that ginger also suppresses leukotriene biosynthesis by inhibiting 5-lipoxygenase. This pharmacological property distinguishes ginger from nonsteroidal anti-inflammatory drugs. This discovery preceded the observation that dual inhibitors of cyclooxygenase and 5-lipoxygenase may have a better therapeutic profile and have fewer side effects than non-steroidal anti-inflammatory drugs. The characterization of the pharmacological properties of ginger entered a new phase with the discovery that a ginger extract (EV.EXT.77) derived from Zingiber officinale (family Zingiberaceae) and Alpina galanga (family Zingiberaceae) inhibits the induction of several genes involved in the inflammatory response. These include genes encoding cytokines, chemokines, and the inducible enzyme cyclooxygenase-2. This discovery provided the first evidence that ginger modulates biochemical pathways activated in chronic inflammation. Identification of the molecular targets of individual ginger constituents provides an opportunity to optimize and standardize ginger products with respect to their effects on specific biomarkers of inflammation. Such preparations will be useful for studies in experimental animals and humans.

MK Balijepalli, et al., “Comparative antioxidant and anti-inflammatory effects of [6]-gingerol, [8]-gingerol, [10]- gingerol and [6]-shogaol,” Journal of ethnopharmacology 127.2 (2010): 515-20.

ETHNOPHARMACOLOGICAL    RELEVANCE:

Zingiber officinale Rosc. (Zingiberaceae) has been traditionally used in Ayurvedic, Chinese and Tibb-Unani herbal medicines for the treatment of various illnesses that involve inflammation and which are caused by oxidative stress. Although gingerols and shogaols are the major bioactive compounds present in Zingiber officinale, their molecular mechanisms of actions and the relationship between their structural features and the activity have not been well studied.

AIM OF THE STUDY:

The aim of the present study was to examine and compare the antioxidant and anti-inflammatory activities of gingerols and their natural analogues to determine their structure-activity relationship and molecular mechanisms. MATERIALS AND METHODS:

The in vitro activities of the compounds [6]-gingerol, [8]-gingerol, [10]-gingerol and [6]-shogaol were evaluated for scavenging of 1,1-diphenyl-2-picyrlhydrazyl (DPPH), superoxide and hydroxyl radicals, inhibition of N-formyl- methionyl-leucyl-phenylalanine (f-MLP) induced reactive oxygen species (ROS) production in human polymorphonuclear neutrophils (PMN), inhibition of lipopolysaccharide induced nitrite and prostaglandin E(2) production in RAW 264.7 cells.

RESULTS:

In the antioxidant activity assay, [6]-gingerol, [8]-gingerol, [10]-gingerol and [6]-shogaol exhibited substantial scavenging activities with IC(50) values of 26.3, 19.47, 10.47 and 8.05 microM against DPPH radical, IC(50) values of 4.05, 2.5, 1.68 and 0.85 microM against superoxide radical and IC(50) values of 4.62, 1.97, 1.35 and 0.72 microM against hydroxyl radical, respectively. The free radical scavenging activity of these compounds also enhanced with increasing concentration (P<0.05). On the other hand, all the compounds at a concentration of 6 microM have significantly inhibited (P<0.05) f-MLP-stimulated oxidative burst in PMN. In addition, production of inflammatory mediators (NO and PGE(2)) has been inhibited significantly (P<0.05) and dose-dependently.

CONCLUSIONS:

6-Shogaol has exhibited the most potent antioxidant and anti-inflammatory properties which can be attributed to the presence of alpha,beta-unsaturated ketone moiety. The carbon chain length has also played a significant role in making 10-gingerol as the most potent among all the gingerols. This study justifies the use of dry ginger in traditional systems of medicine.

Jennifer B. Frye, et al., “Comparative Effects of Two Gingerol-Containing Zingiber officinale Extracts on Experimental Rheumatoid Arthritis,” Journal of Natural Products 72.3 (2009): 403-407.

Ginger (Zingiber officinale) supplements are being promoted for arthritis treatment in western societies based on ginger’s traditional use as an anti-inflammatory in Chinese and Ayurvedic medicine. However, scientific evidence of ginger’s antiarthritic effects is sparse, and its bioactive joint-protective components have not been identified. Therefore, the ability of a well-characterized crude ginger extract to inhibit joint swelling in an animal model of rheumatoid arthritis, streptococcal cell wall (SCW)-induced arthritis, was compared to that of a fraction containing only gingerols and their derivatives. Both extracts were efficacious in preventing joint inflammation. However, the crude dichloromethane extract, which also contained essential oils and more polar compounds, was more efficacious (when normalized to gingerol content) in preventing both joint inflammation and destruction. In conclusion, these data document a very significant joint-protective effect of these ginger samples, and suggest that non-gingerol components are bioactive and can enhance the antiarthritic effects of the more widely studied gingerols.

Wenkui Li, et al. “Cyclooxygenase-2 inhibitors in ginger (Zingiber officinale),” Fitoterapia 82.1 (2011):38-43.

Ginger roots have been used to treat inflammation and have been reported to inhibit cyclooxygenase (COX). Ultrafiltration liquid chromatography mass spectrometry was used to screen a chloroform partition of a methanol extract of ginger roots for COX-2 ligands, and 10-gingerol, 12-gingerol, 8-shogaol, 10-shogaol, 6-gingerdione, 8- gingerdione, 10-gingerdione, 6-dehydro-10-gingerol, 6-paradol, and 8-paradol bound to the enzyme active site. Purified 10-gingerol, 8-shogaol and 10-shogaol inhibited COX-2 with IC50 values of 32 μM, 17.5 μM and 7.5 μM, respectively. No inhibition of COX-1 was detected. Therefore, 10-gingerol, 8-shogaol and 10-shogaol inhibit COX-2 but not COX-1, which can explain, in part, anti-inflammatory properties of ginger.

RD Altman, et al. “Effects of a ginger extract on knee pain in patients with osteoarthritis,” Arthritis and rheumatism

44.11 (2001): 2531-8.

OBJECTIVE:

To evaluate the efficacy and safety of a standardized and highly concentrated extract of 2 ginger species, Zingiber officinale and Alpinia galanga (EV.EXT 77), in patients with osteoarthritis (OA) of the knee.

METHODS:

Two hundred sixty-one patients with OA of the knee and moderate-to-severe pain were enrolled in a randomized, double-blind, placebo-controlled, multicenter, parallel-group, 6-week study. After washout, patients received ginger extract or placebo twice daily, with acetaminophen allowed as rescue medication. The primary efficacy variable was the proportion of responders experiencing a reduction in "knee pain on standing," using an intent-to-treat analysis. A responder was defined by a reduction in pain of > or = 15 mm on a visual analog scale.

RESULTS:

In the 247 evaluable patients, the percentage of responders experiencing a reduction in knee pain on standing was superior in the ginger extract group compared with the control group (63% versus 50%; P = 0.048). Analysis of the secondary efficacy variables revealed a consistently greater response in the ginger extract group compared with the control group, when analyzing mean values: reduction in knee pain on standing (24.5 mm versus 16.4 mm; P = 0.005), reduction in knee pain after walking 50 feet (15.1 mm versus 8.7 mm; P = 0.016), and reduction in the Western Ontario and McMaster Universities osteoarthritis composite index (12.9 mm versus 9.0 mm; P = 0.087). Change in global status and reduction in intake of rescue medication were numerically greater in the ginger extract group. Change in quality of life was equal in the 2 groups. Patients receiving ginger extract experienced more gastrointestinal (GI) adverse events than did the placebo group (59 patients versus 21 patients). GI adverse events were mostly mild.

CONCLUSION:

A highly purified and standardized ginger extract had a statistically significant effect on reducing symptoms of OA of the knee. This effect was moderate. There was a good safety profile, with mostly mild GI adverse events in the ginger extract group.

T. Therkleson, “Ginger compress therapy for adults with osteoarthritis,” Journal of Advanced Nursing 66. (2010): 2225–2233.

AIM:

This paper is a report of a study to explicate the phenomenon of ginger compresses for people with osteoarthritis. BACKGROUND:

Osteoarthritis is claimed to be the leading cause of musculoskeletal pain and disability in Western society. Management ideally  combines  non-pharmacological  strategies,  including complementary therapies  and  pain- relieving medication. Ginger has been applied externally for over a thousand years in China to manage arthritis symptoms.

METHOD:

Husserlian phenomenological methodology was used and the data were collected in 2007. Ten purposively selected adults who had suffered osteoarthritis for at least a year kept daily diaries and made drawings, and follow-up interviews and telephone conversations were conducted.

FINDINGS:

Seven themes were identified in the data: (1) Meditative-like stillness and relaxation of thoughts; (2) Constant penetrating warmth throughout the body; (3) Positive change in outlook; (4) Increased energy and interest in the world; (5) Deeply relaxed state that progressed to a gradual shift in pain and increased interest in others; (6) Increased suppleness within the body and (7) More comfortable, flexible joint mobility. The essential experience of ginger compresses exposed the unique qualities of heat, stimulation, anti-inflammation and analgesia.

CONCLUSION:

Nurses could consider this therapy as part of a holistic treatment for people with osteoarthritis symptoms. Controlled research is needed with larger numbers of older people to explore further the effects of the ginger compress therapy.

SY Kim, et al. “6-Shogaol, a ginger product, modulates neuroinflammation: A new approach to neuroprotection,”

Neuropharmacology 63.2 (2012): 211-23.

Inflammatory processes in the central nervous system play an important role in a number of neurodegenerative diseases mediated by microglial activation, which results in neuronal cell death. Microglia act in immune surveillance and host defense while resting. When activated, they can be deleterious to neurons, even resulting in neurodegeneration. Therefore, the inhibition of microglial activation is considered a useful strategy in searching for neuroprotective agents. In this study, we investigated the effects of 6-shogaol, a pungent agent from Zingiber officinale Roscoe, on microglia activation in BV-2 and primary microglial cell cultures. 6-Shogaol significantly inhibited the release of nitric oxide (NO) and the expression of inducible nitric oxide synthase (iNOS) induced by lipopolysaccharide (LPS). The effect was better than that of 6-gingerol, wogonin, or N-monomethyl-l-arginine, agents previously reported to inhibit nitric oxide. 6-Shogaol exerted its anti-inflammatory effects by inhibiting the production of prostaglandin E(2) (PGE(2)) and proinflammatory cytokines, such as interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α), and by downregulating cyclooxygenase-2 (COX-2), p38 mitogen-activated protein kinase (MAPK), and nuclear factor kappa B (NF-κB) expression. In addition, 6-shogaol suppressed the microglial activation induced by LPS both in primary cortical neuron-glia culture and in an in vivo neuroinflammatory model. Moreover, 6-shogaol showed significant neuroprotective effects in vivo in transient global ischemia via the inhibition of microglia. These results suggest that 6-shogaol is an effective therapeutic agent for treating neurodegenerative diseases.

MN Ghayur, et al. “Ginger attenuates acetylcholine-induced contraction and Ca2+ signalling in murine airway smooth muscle cells,” Canadian Journal of Physiology and Pharmacology 86.5 (2008):264-71.

Asthma is a chronic disease characterized by inflammation and hypersensitivity of airway smooth muscle cells (ASMCs) to different spasmogens. The past decade has seen increased use of herbal treatments for many chronic illnesses. Ginger (Zingiber officinale) is a common food plant that has been used for centuries in treating respiratory illnesses. In this study, we report the effect of its 70% aqueous methanolic crude extract (Zo.Cr) on acetylcholine (ACh)-induced airway contraction and Ca(2+) signalling in ASMCs using mouse lung slices. Airway contraction and Ca(2+) signalling, recorded via confocal microscopy, were induced with ACh, either alone or after pretreatment of slices with Zo.Cr and (or) verapamil, a standard Ca(2+) channel blocker. ACh (10 micromol/L) stimulated airway contraction, seen as decreased airway diameter, and also stimulated Ca(2+) transients (sharp rise in [Ca(2+)]i) and oscillations in ASMCs, seen as increased fluo-4-induced fluorescence intensity. When Zo.Cr (0.3-1.0 mg/mL) was given 30 min before ACh administration, the ACh-induced airway contraction and Ca(2+) signalling were significantly reduced. Similarly, verapamil (1 micromol/L) also inhibited agonist-induced airway contraction and Ca(2+) signalling,  indicating  a  similarity  in  the  modes  of  action.  When  Zo.Cr (0.3  mg/mL)  and verapamil  (1 micromol/L) were given together before ACh, the degree of inhibition was the same as that observed when each of these blockers was given alone, indicating absence of any additional inhibitory mechanism in the extract. In Ca(2+) - free solution, both Zo.Cr and verapamil, when given separately, inhibited Ca(2+) (10 mmol/L)-induced increase in fluorescence and airway contraction. This shows that ginger inhibits airway contraction and associated Ca(2+) signalling, possibly via blockade of plasma membrane Ca(2+) channels, thus reiterating the effectiveness of this age-old herb in treating respiratory illnesses.

JA Podlogar, and EJ Verspohl. “Antiinflammatory effects of ginger and some of its components in human bronchial epithelial (BEAS-2B) cells,” Phytotherapy Research 26.3 (2012): 333-6.

The proinflammatory chemokine interleukin-8 is increased in asthmatic patients. Traditionally, ginger is used as an antiinflammatory drug. An extract and several compounds of Zingiber officinale (ginger) were tested in human bronchial epithelial cells (BEAS-2B cells) with respect to their effect on lipopolysaccharide (LPS)-induced secretion of the proinflammatory chemokine interleukin 8 (IL-8) and RANTES (regulated upon activation, normal T-cell expressed and secreted). An oily extract of ginger rhizome with > 25% total pungent compounds, ginger volatile oil, ar-curcumene and α-pinene reduced the LPS-induced IL-8 secretion (measured by a specific enzyme-linked immunosorbent assay), whereas a spissum extract, the pungents [6]-gingerol and its metabolite [6]-shogaol, and the terpenoids citral and β-phellandrene showed no effect. The LPS-induced slight increase of RANTES was reduced by volatile oil, ar-curcumene and α-pinene. There was no effect of LPS on TNF-α. Our results suggest that distinct ginger compounds could be used as antiinflammatory drugs in respiratory infections.

MS Huang, et al. “Ginger suppresses phthalate ester-induced airway remodeling,” Journal of Agricultural and Food Chemistry 59.7 (2011) 3429-38.

This study has two novel findings: it is not only the first to demonstrate inflammatory cytokines, which are produced by the bronchial epithelium after exposure to phthalate esters and contribute to airway remodeling by increasing human bronchial smooth muscle cells (BSMC) migration and proliferation, but it is also the first to reveal that ginger reverses phthalate ester-mediated airway remodeling. Human bronchial epithelial cell lines BEAS-2B and HBE135-E6E7 (HBE) were treated with butylbenzyl phthalate (BBP), bis(2-ethylhexyl) phthalate (BEHP), dibutyl phthalate (DBP), and diethyl phthalate (DEP), and the conditioned medium (CM) was harvested and then added to BSMC. Cultures of BSMC with BBP-, BEHP-, DBP-, and DEP-BEAS-2B-CM and DEP-HBE-CM increased BSMC proliferation and migration, which are major features in asthma remodeling. Exposure of BEAS-2B and HBE to DBP caused epithelial cells to produce inflammatory cytokines IL-8 and RANTES, which subsequently induced BSMC proliferation and migration. Depleting both IL-8 and RANTES completely reversed the effect of DBP-BEAS-2B-CM and DBP-HBE-CM-mediated BSMC proliferation and migration, suggesting this effect is a synergistic influence of IL- 8 and RANTES. Moreover, [6]-shogaol, [6]-gingerol, [8]-gingerol, and [10]-gingerol, which are major bioactive compounds present in Zingiber officinale , suppress phthalate ester-mediated airway remodeling. This study suggests that ginger is capable of preventing phthalate ester-associated asthma.

JH Bae, et al., “*6+-Gingerol suppresses interleukin-1 beta-induced MUC5AC gene expression in human airway epithelial cells,” American Journal of Rhinology & Allergy 23.4 (2009): 385-91.

BACKGROUND:

[6]-Gingerol is a major  active component of ginger and a natural polyphenol compound. The present study investigated whether [6]-gingerol suppresses interleukin (IL)-1 beta-induced MUC5AC gene expression in human airway epithelial cells and, if so, examined whether the suppression of MUC5AC gene expression is mediated via the mitogen-activated protein kinase (MAPK) signal transduction pathway.

METHODS:

MUC5AC mRNA and protein were measured using reverse transcription-polymerase chain reaction (PCR), real-time PCR, and Western blot analysis in cultured NCI-H292 human airway epithelial cells. Extracellular signal-regulated kinase (ERK) and p38 MAPK protein levels were analyzed by Western blot.

RESULTS:

Expression of MUC5AC mRNA increased in NCI-H292 cells upon treatment with 10 ng/mL of IL-1 beta for 24 hours. When the cells were pretreated with 10 microM of [6]-gingerol, expression of IL-1 beta-induced MUC5AC mRNA and protein was significantly suppressed. Suppression of IL-1 beta-induced MUC5AC mRNA was also observed in cells pretreated with ERK- or p38 MAPK-specific inhibitors, suggesting that [6]-gingerol-mediated suppression of IL- 1 beta-induced MUC5AC mRNA operated via the ERK- and p38 MAPK-dependent pathways.

CONCLUSIONS:

[6]-Gingerol suppresses IL-1 beta -induced MUC5AC gene expression in human airway epithelial cells via the ERK- and p38 MAPK-dependent pathways; therefore, [6]-gingerol may be considered a possible anti-hypersecretory agent.

JK Kundu, et al., “Ginger-derived phenolic substances with cancer preventive and therapeutic potential,” Forum of Nutrition 61. (2009): 182-92.

Ginger, the rhizomes of Zingiber officinale Roscoe (Zingiberaceae), has widely been used as a spice and condiment in different societies. Besides its food-additive functions, ginger has a long history of medicinal use for  the treatment of a variety of human ailments including common colds, fever, rheumatic disorders, gastrointestinal complications, motion sickness, diabetes, cancer, etc. Ginger contains several nonvolatile pungent principles viz. gingerols, shogaols, paradols and zingerone, which account for many of its health beneficial effects. Studies conducted in cultured cells as well as in experimental animals revealed that these pungent phenolics possess anticarcinogenic properties. This chapter summarizes updated information on chemopreventive and chemotherapeutic effects of ginger-derived phenolic substances and their underlying mechanisms.

MS Baliga, et al., “Update on the chemopreventive effects of ginger and its phytochemicals,” Critical Reviews in Food Science and Nutrition 51.6 (2011): 499-523.

The rhizomes of Zingiber officinale Roscoe (Zingiberaceae), commonly known as ginger, is one of the most widely used spice and condiment. It is also an integral part of many traditional medicines and has been extensively used in Chinese, Ayurvedic, Tibb-Unani, Srilankan, Arabic, and African traditional medicines, since antiquity, for many unrelated human ailments including common colds, fever, sore throats, vomiting, motion sickness, gastrointestinal complications, indigestion, constipation, arthritis, rheumatism, sprains, muscular aches, pains, cramps, hypertension, dementia, fever, infectious diseases, and helminthiasis. The putative active compounds are nonvolatile pungent principles, namely gingerols, shogaols, paradols, and zingerone. These compounds are some of the extensively studied phytochemicals and account for the antioxidant, anti-inflammatory, antiemetic, and gastroprotective activities. A number of preclinical investigations with a wide variety of assay systems and carcinogens have shown that ginger and its compounds possess chemopreventive and antineoplastic effects. A number of mechanisms have been observed to be involved in the chemopreventive effects of ginger. The cancer preventive activities of ginger are supposed to be mainly due to free radical scavenging, antioxidant pathways, alteration of gene expressions, and induction of apoptosis, all of which contribute towards decrease in tumor initiation, promotion, and progression. This review provides concise information from preclinical studies with both cell culture models and relevant animal studies by focusing on the mechanisms responsible for the chemopreventive action. The conclusion describes directions for future research to establish its activity and utility as a human cancer preventive and therapeutic drug. The above-mentioned mechanisms of ginger seem to be promising for cancer prevention; however, further clinical studies are warranted to assess the efficacy and safety of ginger.

T Ando, et al., “Ginger ingredients reduce viability of gastric cancer cells via distinct mechanisms,” Biochemical and Biophysical Chemical Research Communications 362.1 (2007):218-23.

Ginger has been used throughout the world as spice, food and traditional herb. We found that 6-gingerol, a phenolic alkanone isolated from ginger, enhanced the TRAIL-induced viability reduction of gastric cancer cells while 6-gingerol alone affected viability only slightly. 6-Gingerol facilitated TRAIL-induced apoptosis by increasing TRAIL- induced caspase-3/7 activation. 6-Gingerol was shown to down-regulate the expression of cIAP1, which suppresses caspase-3/7 activity, by inhibiting TRAIL-induced NF-kappaB activation. As 6-shogaol has a chemical structure similar to 6-gingerol, we also assessed the effect of 6-shogaol on the viability of gastric cancer cells. Unlike 6- gingerol, 6-shogaol alone reduced the viability of gastric cancer cells. 6-Shogaol was shown to damage microtubules and induce mitotic arrest. These findings indicate for the first time that in gastric cancer cells, 6- gingerol enhances TRAIL-induced viability reduction by inhibiting TRAIL-induced NF-kappaB activation while 6- shogaol alone reduces viability by damaging microtubules.

Nam E Kang, et al., “[6]-Gingerol inhibits metastasis of MDA-MB-231 human breast cancer cells,” The Journal of Nutritional Biochemistry 19.5 (2008): 313-319.

Gingerol (Zingiber officinale Roscoe, Zingiberaceae) is one of the most frequently and heavily consumed dietary condiments throughout the world. The oleoresin from rhizomes of ginger contains [6]-gingerol (1-*4′-hydroxy-3′- methoxyphenyl]-5-hydroxy-3-decanone) and its homologs which are pungent ingredients that have been found to possess many interesting pharmacological and physiological activities, such as anti-inflammatory, antihepatotoxic and cardiotonic effects. However, the effects of [6]-gingerol on metastatic processes in breast cancer cells are not currently well known. Therefore, in this study, we examined the effects of [6]-gingerol on adhesion, invasion, motility, activity and the amount of MMP-2 or -9 in the MDA-MB-231 human breast cancer cell line. We cultured MDA-MB-231 cells in the presence of various concentrations of [6]-gingerol (0, 2.5, 5 and 10 μM). *6+-Gingerol had no effect on cell adhesion up to 5 μM, but resulted in a 16% reduction at 10 μM. Treatment of MDA-MB-231 cells with increasing concentrations of [6]-gingerol led to a concentration-dependent decrease in cell migration and motility. The activities of MMP-2 or MMP-9 in MDA-MB-231 cells were decreased by treatment with [6]-gingerol and occurred in a dose-dependent manner. The amount of MMP-2 protein was decreased in a dose-dependent manner, although there was no change in the MMP-9 protein levels following treatment with [6]-gingerol. MMP-2 and MMP-9 mRNA expression were decreased by [6]-gingerol treatment. In conclusion, we have shown that [6]- gingerol inhibits cell adhesion, invasion, motility and activities of MMP-2 and MMP-9 in MDA-MB-231 human breast cancer cell lines.

E-H Chew, et al., "6-Shogaol, an active constituent of ginger, inhibits breast cancer cell invasion by reducing matrix metalloproteinase-9 expression via blockade of nuclear factor-κB activation,” British Journal of Pharmacology 161.8 (2010):1763-1777.

BACKGROUND AND PURPOSE

Shogaols are reported to possess anti-inflammatory and anticancer activities. However, the antimetastatic potential of shogaols remains unexplored. This study was performed to assess the effects of shogaols against breast cancer cell invasion and to investigate the underlying mechanisms.

EXPERIMENTAL APPROACH

The anti-invasive effect of a series of shogaols was initially evaluated on MDA-MB-231 breast cancer cells using the matrigel invasion assay. The suppressive effects of 6-shogaol on phorbol 12-myristate 13-acetate (PMA)-induced matrix metalloproteinase-9 (MMP-9) gelatinolytic activity and nuclear factor-κB (NF-κB) activation were further determined.

KEY RESULTS

Shogaols (6-, 8- and 10-shogaol) inhibited PMA-stimulated MDA-MB-231 cell invasion with an accompanying decrease in MMP-9 secretion. 6-Shogaol was identified to display the greatest anti-invasive effect in association with a dose-dependent reduction in MMP-9 gene activation, protein expression and secretion. The NF-κB transcriptional activity was decreased by 6-shogaol; an effect mediated by inhibition of IκB phosphorylation and degradation that subsequently led to suppression of NF-κB p65 phosphorylation and nuclear translocation. In addition, 6-shogaol was found to inhibit JNK activation with no resulting reduction in activator protein-1 transcriptional activity. By using specific inhibitors, it was demonstrated that ERK and NF-κB signalling, but not JNK and p38 signalling, were involved in PMA-stimulated MMP-9 activation.

CONCLUSIONS AND IMPLICATIONS

6-Shogaol is a potent inhibitor of MDA-MB-231 cell invasion, and the molecular mechanism involves at least in part the down-regulation of MMP-9 transcription by targeting the NF-κB activation cascade. This class of naturally occurring small molecules thus have potential for clinical use as antimetastatic treatments.

Srijit Das, et al., “Ginger Extract (Zingiber Officinale) has Anti-Cancer and Anti-Inflammatory Effects on Ethionine- Induced Hepatoma Rats,” Clinics 63.6 (2008):807-813.

OBJECTIVE

To evaluate the effect of ginger extract on the expression of NFκB and TNF-α in liver cancer-induced rats. METHODS

Male Wistar rats were randomly divided into 5 groups based on diet: i) control (given normal rat chow), ii) olive oil,

iii) ginger extract (100mg/kg body weight), iv) choline-deficient diet + 0.1% ethionine to induce liver cancer and v) choline-deficient diet + ginger extract (100mg/kg body weight). Tissue samples obtained at eight weeks were fixed with formalin and embedded in paraffin wax, followed by immunohistochemistry staining for NFκB and TNF-α. RESULTS

The expression of NFκB was detected in the choline-deficient diet group, with 88.3 ± 1.83% of samples showing positive staining, while in the choline-deficient diet supplemented with ginger group, the expression of NFκB was significantly reduced, to 32.35 ± 1.34% (p<0.05). In the choline-deficient diet group, 83.3 ± 4.52% of samples showed positive staining of TNF-α, which was significantly reduced to 7.94 ± 1.32% (p<0.05) when treated with ginger. There was a significant correlation demonstrated between NFκB and TNF-α in the choline-deficient diet group but not in the choline-deficient diet treated with ginger extract group.

CONCLUSION

In conclusion, ginger extract significantly reduced the elevated expression of NFκB and TNF-α in rats with liver cancer. Ginger may act as an anti-cancer and anti-inflammatory agent by inactivating NFκB through the suppression of the pro-inflammatory TNF-α.

Ann M. Bode, et al. “[6]-Gingerol Suppresses Colon Cancer Growth by Targeting Leukotriene A4 Hydrolase,” Cancer Research 69.13 (2009):5584-91.

[6]-Gingerol, a natural component of ginger, exhibits anti-inflammatory and antitumorigenic activities. Despite its potential efficacy in cancer, the mechanism by which [6]-gingerol exerts its chemopreventive effects remains elusive. The leukotriene A4 hydrolase (LTA4H) protein is regarded as a relevant target for cancer therapy. Our in silico prediction using a reverse-docking approach revealed that LTA4H might be a potential target of [6]-gingerol. We supported our prediction by showing that [6]-gingerol suppresses anchorage-independent cancer cell growth by inhibiting LTA4H activity in HCT116 colorectal cancer cells. We showed that [6]-gingerol effectively suppressed tumor growth in vivo in nude mice, an effect that was mediated by inhibition of LTA4H activity. Collectively, these findings indicate a crucial role of LTA4H in cancer and also support the anticancer efficacy of [6]-gingerol targeting of LTA4H for the prevention of colorectal cancer.

K. Kobata, “A nonpungent component of steamed ginger--[10]-shogaol--increases adrenaline secretion via the activation of TRPV1,” Nutritional Neuroscience 9.3-4 (2006):169-78.

We investigated the components of ginger that are involved in increasing body temperature. Gingerols ([6,8,10]- gingerols) and shogaols ([6,8,10]-shogaols) having different alkyl carbon chain lengths were targeted. All the gingerols and shogaols increased intracellular calcium concentration in rat transient receptor potential vanilloid subtype 1 (TRPV1)-expressing HEK293 cells via TRPV1. In this regard, the shogaols were more potent than the gingerols. Aversive responses were induced by [6]-, [10]-gingerol, and [6]-shogaol (5 mmol/l) in rats when these compounds were applied to the eye; however, no response was observed in response to [10]-shogaol (5 and 10 mmol/l). [10]-Shogaol induced nociceptive responses via TRPV1 in rats following its subcutaneous injection into the hindpaw; the pungent compound capsaicin (CAP) and [6]-shogaol were observed to have similar effects. Moreover, adrenal catecholamine secretion, which influences energy consumption, was promoted in rats in response to [6]- and [10]-gingerols and [6]- and [10]-shogaols (1.6 micromol/kg, i.v.). [10]-Shogaol-induced adrenaline secretion was inhibited by administration of capsazepine, a TRPV1 antagonist. In conclusion, gingerols and shogaols activated TRPV1 and increased adrenaline secretion. Interestingly, [10]-shogaol is the only nonpungent compound among the gingerols and shogaols, suggesting its usefulness as a functional ingredient in food.

MY Henein, and R. Nicoll, “Ginger (Zingiber officinale Roscoe): a hot remedy for cardiovascular disease?”

International Journal of Cardiology 131.3 (2009):408-9.

Ginger is now exciting considerable interest for its potential to treat many aspects of cardiovascular disease. This letter reviews the more recent trials, which suggest that ginger shows considerable anti-inflammatory, antioxidant, anti-platelet, hypotensive and hypolipidemic effect in in vitro and animal studies. Human trials have been few and generally used a low dose with inconclusive results, however dosages of 5 g or more demonstrated significant anti- platelet activity. More human trials are needed using an appropriate dosage of a standardised extract. Should these prove positive, ginger has the potential to offer not only a cheaper natural alternative to conventional agents but one with significantly lower side effects.

AJ Ammit, et al. “Gingerols and related analogues inhibit arachidonic acid-induced human platelet serotonin release and aggregation,” Thrombosis Research 103.5 (2001):387-97.

Gingerols, the active components of ginger (the rhizome of Zingiber officinale, Roscoe), represent a potential new class of platelet activation inhibitors. In this study, we examined the ability of a series of synthetic gingerols and related phenylalkanol analogues (G1-G7) to inhibit human platelet activation, compared to aspirin, by measuring their effects on arachidonic acid (AA)-induced platelet serotonin release and aggregation in vitro. The IC(50) for inhibition of AA-induced (at EC(50)=0.75 mM) serotonin release by aspirin was 23.4+/-3.6 microM. Gingerols and related analogues (G1-G7) inhibited the AA-induced platelet release reaction in a similar dose range as aspirin, with IC(50) values between 45.3 and 82.6 microM. G1-G7 were also effective inhibitors of AA-induced human platelet aggregation. Maximum inhibitory (IC(max)) values of 10.5+/-3.9 and 10.4+/-3.2 microM for G3 and G4, respectively, were approximately 2-fold greater than aspirin (IC(max)=6.0+/-1.0 microM). The remaining gingerols and related analogues maximally inhibited AA-induced platelet aggregation at approximately 20-25 microM. The mechanism underlying inhibition of the AA-induced platelet release reaction and aggregation by G1-G7 may be via an effect on cyclooxygenase (COX) activity in platelets because representative gingerols and related analogues (G3- G6) potently inhibited COX activity in rat basophilic leukemia (RBL-2H3) cells. These results provide a basis for the design of more potent synthetic gingerol analogues, with similar potencies to aspirin, as platelet  activation inhibitors with potential value in cardiovascular disease.

KK Al-Qattan, et al., “The use of ginger (Zingiber officinale Rosc.) as a potential anti-inflammatory and antithrombotic agent,” Prostaglandins, Leukotrienes, and Essential Fatty Acids 67.6 (2002):475-8.

The effect of an aqueous extract of ginger (Zingiber officinale) on serum cholesterol and triglyceride levels as well as platelet thromboxane-B(2) and prostaglandin-E(2) production was examined. A raw aqueous extract of ginger was administered daily for a period of 4 weeks, either orally or intraperitoneally (IP) to rats. Fasting blood serum was investigated for thromboxane-B(2), prostaglandin-E(2), cholesterol and triglycerides. A low dose of ginger (50 mg/kg) administered either orally or IP did not produce any significant reduction in the serum thromboxane-B(2) levels when compared to saline-treated animals. However, ginger administered orally caused significant changes in the serum PGE(2) at this dose. High doses of ginger (500 mg/kg) were significantly effective in lowering serum PGE(2) when given either orally or IP. However, TXB(2) levels were significantly lower in rats given 500 mg/kg ginger orally but not IP. A significant reduction in serum cholesterol was observed when a higher dose of ginger (500 mg/kg) was administered. At a low dose of ginger (50 mg/kg), a significant reduction in the serum cholesterol was observed only when ginger was administered IP. No significant changes in serum triglyceride levels were observed upon administration of either the low or high dose of ginger. These results suggest that ginger could be used as an cholesterol-lowering, antithrombotic and anti-inflammatory agent.

A. Bordia, et al., “Protective effect of ginger, Zingiber officinale Rosc on experimental atherosclerosis in rabbits,”

Indian Journal of Experimental Biology 42.7 (2004):736-8.

The effects of air dried ginger powder (0.1g/kg body weight, po, for 75 days) were studied on experimentally induced atherosclerosis in rabbits by cholesterol feeding (0.3g/kg body weight, po). Cholesterol feeding for 75 days lead to distinct development of atheroma in the aorta and coronary arteriesof the rabbits and this was significantly inhibited by about 50% following ginger administration. There was distinct decrease in lipid peroxidation and enhancement of fibrinolytic activity in ginger treated animals. However, ginger did not lower blood lipidsto any significant extent. This distinct protection from the development of atherosclerosis by ginger is probably because of its free radical scavanging, prostaglandin inhibitory and fibri properties.

Yuhao Li, et al., “A 35-day gavage safety assessment of ginger in rats.” Regulatory Toxicology and Pharmacology 54.2 (2009):118-123.

Ginger (Zingiber officinale Roscoe, Zingiberacae) is one of the most commonly used spices around the world and a traditional medicinal plant that has been widely used in Chinese, Ayurvedic and Unani-Tibb medicines for several thousand years. However, there was still lack of systemic safety evaluation. We conducted a 35-day toxicity study on ginger in rats. Both male and female rats were daily treated with ginger powder at the dosages of 500, 1000 and 2000 mg/kg body weight by a gavage method for 35 days. The results demonstrated that this chronic administration of ginger was not associated with any mortalities and abnormalities in general conditions, behavior, growth, and food and water consumption. Except for dose-related decrease in serum lactate dehydrogenase activity in males, ginger treatment induced similar hematological and blood biochemical parameters to those of controlled animals. In general, ginger treatment caused no overt organ abnormality. Only at a very high dose (2000 mg/kg), ginger led to slightly reduced absolute and relative weights of testes (by 14.4% and 11.5%, respectively). This study provides a new understanding of the toxicological properties of ginger.

ENDNOTES

1 Sebastian Pole, Ayurvedic Medicine (Philadelphia, PA: Elsevier, 2006) 183.

2 David Frawley, and Vasant Lad, The Yoga of Herbs (Twin Lakes, WI: Lotus Press, 1992) 122.

3 John Lust, The Herb Book (New York: Benedict Lust Publications, 2005) 205, 514.

4 Ibid, p205, 514.

5 Karta Purkh Singh Khalsa, and Michael Tierra The Way of Ayurvedic Herbs (Twin Lakes, WI: Lotus Press, 2008) 136, 138.

6 R.K. Goel and K. Sairam. “Anti-Ulcer Drugs from Indigenous Sources with Emphasis on Musa Sapientum, Tamrabhasma, Asparagus Racemosus, and Zingiber Officinale,” Indian Journal of Pharmacology 34 (2002): 100-

110.

7 Karta Purkh Singh Khalsa, and Michael Tierra The Way of Ayurvedic Herbs (Twin Lakes, WI: Lotus Press, 2008) 136, 138.

8 John Lust, The Herb Book (New York: Benedict Lust Publications, 2005) 514-515.

9 Karta Purkh Singh Khalsa and Michael Tierra, The Way of Ayurvedic Herbs (Twin Lakes, WI: Lotus Press, 2008) 138.

10 Sebastian Pole, Ayurvedic Medicine (Philadelphia, PA: Elsevier, 2006) 183.

11 David Frawley, and Vasant Lad, The Yoga of Herbs (Twin Lakes, WI: Lotus Press, 1992) 121.

12 Vaidya Bhagwan Dash, Materia Medica of Ayurveda (New Delhi: Concept Publishing, 1980) 35, ch.2, v.54.

13Kaviraj Kunia Lal Bhishagratna, ed. The Sushruta Samhita. Vol.I (Calcutta, self, 1907) 510, ch. XLVI.

14 Sebastian Pole, Ayurvedic Medicine (Philadelphia, PA: Elsevier, 2006) 183.

15 David Frawley, and Vasant Lad, The Yoga of Herbs (Twin Lakes, WI: Lotus Press, 1992) 122.

16 Karta Purkh Singh Khalsa and Michael Tierra, The Way of Ayurvedic Herbs (Twin Lakes, WI: Lotus Press, 2008) 136.

17 Michael Tierra, The Way of Herbs (Santa Cruz, CA: Unity Press, 1980) 70.

18 David Frawley and Vasant Lad, The Yoga of Herbs (Twin Lakes, WI: Lotus Press, 1992) 121-122.

19 Daniel P. Reid, Chinese Herbal Medicine (Boston: Shambhala Publications, Inc., 1986) 116.

20 Victoria Zak, 20,000 Secrets of Tea (New York: Dell Publishing, 1999) 131-132.

21 David Frawley and Vasant Lad, The Yoga of Herbs (Twin Lakes, WI: Lotus Press, 1992) 121. 22 Daniel P. Reid, Chinese Herbal Medicine (Boston: Shambhala Publications, Inc., 1986) 116. 23 David Frawley and Vasant Lad, The Yoga of Herbs (Twin Lakes, WI: Lotus Press, 1992) 121. 24 Sebastian Pole, Ayurvedic Medicine (Philadelphia, PA: Elsevier, 2006) 183.

25 R.K. Goel and K. Sairam. “Anti-Ulcer Drugs from Indigenous Sources with Emphasis on Musa Sapientum, Tamrabhasma, Asparagus Racemosus, and Zingiber Officinale,” Indian Journal of Pharmacology 34 (2002): 100- 110.

26NC Azu and RA Onyeagba, “Antimicrobial Properties Of Extracts Of Allium cepa (Onions) And Zingiber officinale

(Ginger) On Escherichia coli, Salmonella typhi And Bacillus subtilis.” The Internet Journal of Tropical Medicine 3.2 (2007).        http://www.ispub.com/journal/the-internet-journal-of-tropical-medicine/volume-3-number- 2/antimicrobial-properties-of-extracts-of-allium-cepa-onions-and-zingiber-officinale-ginger-on-escherichia-coli- salmonella-typhi-and-bacillus-subtilis.html

27 David Frawley and Vasant Lad, The Yoga of Herbs (Twin Lakes, WI: Lotus Press, 1992) 122.

28 Vaidya Bhagwan Dash, Materia Medica of Ayurveda (New Delhi: Concept Publishing, 1980) ch.2, v.54.

29 Kaviraj Kunia Lal Bhishagratna, ed. Sushruta Samhita, vol.II, 311, ch.V, verse 34.

30 Ibid, vol.II, 311, ch.V, verse 34.

31 Vaidya Bhagwan Dash, Materia Medica of Ayurveda (New Delhi: Concept Publishing, 1980) ch.2, v.63; ch.8, v.9; ch.27, v.11-13.

32 Sebastian Pole, Ayurvedic Medicine (Philadelphia, PA: Elsevier, 2006) 302.

33 Ibid p183.

34 Seng-Kee Chuau, et.al, “Effect of Ginger on Gastric Motility and Symptoms of Functional Dyspepsia,” World Journal of Gastroenterology 17.1 (2011):105-110.

35 Ibid p105-110.

36 Ibid p105-110.

37 SK Chuau, et al., “Effect of Ginger on Gastric Emptying and Motility in Healthy Humans,” European Journal of Gastroenterology and Hepatology 20.5 (2008):436-440.

38 M. Mokhtari, et al., “Ginger extract reduces delayed gastric emptying and nosocomial pneumonia in adult

respiratory distress syndrome patients hospitalized in an intensive care unit,” Journal of Critical Care 25.4 (2010):647-650.

39 Sebastian Pole, Ayurvedic Medicine (Philadelphia, PA: Elsevier, 2006) 183.

40 Owyang Chung, et al., “Effects of ginger on motion sickness and gastric slow-wave dysrhytmias induced by circular vection,” American Journal of Physiology 284.3 (2003):G481-G489.

41 Torben Brask, et al., “Ginger Root Against Seasickness: A Conctrolled Trial on the Open Sea,” Acta Oto-

laryngologica 105.1-2 (1988):45-49.

42 R.K. Goel and K. Sairam. “Anti-Ulcer Drugs from Indigenous Sources with Emphasis on Musa Sapientum,

Tamrabhasma, Asparagus Racemosus, and Zingiber Officinale,” Indian Journal of Pharmacology 34 (2002): 100- 110.

43“NICE Clinical Guidelines, No. 62,” Antenatal Care: Routine Care for the Healthy Pregnant Woman. London:

National Collaborating Centre for Women’s and Children’s Health (UK), RCOG Press, 2008.

44 N Chaiyakunapruk, et al., “The efficacy of ginger for the prevention of postoperative nausea and vomiting: a meta-analysis,” American Journal of Obstetrics and Gynecology 194.1 (2006):95-99.

45 Y.K. Gupta, et al., “Anti-emetic effect of ginger powder versus placebo as an add-on therapy in children and young adults receiving high emetogenic chemotherapy,” Pediatric Blood & Cancer 56.2 (2011):234-238.

46 T Chisaka, et al., “Cholagogic effect of ginger and its active constituents,” Journal of ethnopharmacology 13.2

(1985):217-25.

47 T.A. Ajith, et al., “Zingiber officinale Roscoe prevents acetaminophen-induced acute hepatotoxicity by enhancing hepatic antioxidant status,” Food and Chemical Toxicology 45.11 (2007): 2267-2272.

48 Suresh Kumar, et al., “6-gingerol, an active ingredient of ginger, protects acetaminophen-induced hepatotoxicity in mice,” Journal of Chinese integrative medicine 9.11 (2011):1264-1269.

49 R.K. Goel, and K. Sairam. “Anti-Ulcer Drugs from Indigenous Sources with Emphasis on Musa Sapientum,

Tamrabhasma, Asparagus Racemosus, and Zingiber Officinale,” Indian Journal of Pharmacology 34 (2002): 100- 110.

50 Harish Nayaka Mysore Annaiah, et al., “Gastroprotective Effect of Ginger Rhizome (Zingiber Officinale) Extract: Role of Gallic Acid and Cinnamic Acid in H+, K+-ATPase/H. pylori Inhibition and Anti-Oxidative Mechanism,”

Evidence –Based Complementary and Alternative Medicine 2011. (2011): 249487.

51 NC Azu and RA Onyeagba, “Antimicrobial Properties Of Extracts Of Allium cepa (Onions) And Zingiber officinale

(Ginger) On Escherichia coli, Salmonella typhi And Bacillus subtilis.” The Internet Journal of Tropical Medicine 3.2 (2007).        http://www.ispub.com/journal/the-internet-journal-of-tropical-medicine/volume-3-number- 2/antimicrobial-properties-of-extracts-of-allium-cepa-onions-and-zingiber-officinale-ginger-on-escherichia-coli- salmonella-typhi-and-bacillus-subtilis.html

52 M Park, et al., “Antibacterial activity of *10+-gingerol and [12]-gingerol isolated from ginger rhizome against

periodontal bacteria,” Phytotherapy Research 22. (2008): 1446–1449.

53 NC Azu and RA Onyeagba, “Antimicrobial Properties Of Extracts Of Allium cepa (Onions) And Zingiber officinale

(Ginger) On Escherichia coli, Salmonella typhi And Bacillus subtilis.” The Internet Journal of Tropical Medicine 3.2 (2007).        http://www.ispub.com/journal/the-internet-journal-of-tropical-medicine/volume-3-number- 2/antimicrobial-properties-of-extracts-of-allium-cepa-onions-and-zingiber-officinale-ginger-on-escherichia-coli- salmonella-typhi-and-bacillus-subtilis.html

54 Sebastian Pole, Ayurvedic Medicine (Philadelphia, PA: Elsevier, 2006) 183.

55 CY Chen, et al., “Zingiber officinale (ginger) compounds have tetracycline-resistance modifying effects against clinical extensively drug-resistant Acinetobacter baumannii,” Phytotherapy Research 24.12 (2010):1825-30.

56 M Park, et al., “Antibacterial activity of *10+-gingerol and [12]-gingerol isolated from ginger rhizome against periodontal bacteria,” Phytotherapy Research 22. (2008): 1446–1449.

57 Sebastian Pole, Ayurvedic Medicine (Philadelphia, PA: Elsevier, 2006) 183-184.

58 RA Al-Essa, et al., “Physiological and therapeutical roles of ginger and turmeric on endocrine functions,” The American Journal of Chinese Medicine 39.2 (2011): 215-31.

59 Mark H. Beers, ed., et al, The Merck Manual of Medical Information 2003. 2nd edition. (New York: Pocket Books,

2004) 408-409.

60 Carmelita G. Frondoza, et al., “Ginger—An Herbal Medicinal Product with Broad Anti-Inflammatory Actions,”

Journal of Medicinal Food 8.2 (2005):125-132.

61MK Balijepalli, et al., “Comparative antioxidant and anti-inflammatory effects of [6]-gingerol, [8]-gingerol, [10]- gingerol and [6]-shogaol,” Journal of ethnopharmacology 127.2 (2010): 515-20.

62 Jennifer B. Frye, et al., “Comparative Effects of Two Gingerol-Containing Zingiber officinale Extracts on Experimental Rheumatoid Arthritis,” Journal of Natural Products 72.3 (2009): 403-407.

63Wenkui Li, et al. “Cyclooxygenase-2 inhibitors in ginger (Zingiber officinale),” Fitoterapia 82.1 (2011):38-43.

64 RD Altman, et al. “Effects of a ginger extract on knee pain in patients with osteoarthritis,” Arthritis and rheumatism 44.11 (2001): 2531-8.

65T. Therkleson, “Ginger compress therapy for adults with osteoarthritis,” Journal of Advanced Nursing 66. (2010):

2225–2233.

66SY Kim, et al. “6-Shogaol, a ginger product, modulates neuroinflammation: A new approach to neuroprotection,”

Neuropharmacology 63.2 (2012): 211-23.

67 Sebastian Pole, Ayurvedic Medicine (Philadelphia, PA: Elsevier, 2006) 183.

68 Mark H. Beers, ed., et al, The Merck Manual of Medical Information 2003. 2nd edition. (New York: Pocket Books, 2004) 236.

69 Mayo Clinic, Mayo Clinic Staff, Asthma.

http://www.mayoclinic.com/health/asthma/DS00021/DSECTION=complications

70 MN Ghayur, et al. “Ginger attenuates acetylcholine-induced contraction and Ca2+ signalling in murine airway smooth muscle cells,” Canadian Journal of Physiology and Pharmacology 86.5 (2008):264-71.

71 JA Podlogar and EJ Verspohl. “Antiinflammatory effects of ginger and some of its components in human bronchial epithelial (BEAS-2B) cells,” Phytotherapy Research 26.3 (2012): 333-6.

72 MS Huang, et al. “Ginger suppresses phthalate ester-induced airway remodeling,” Journal of Agricultural and

Food Chemistry 59.7 (2011) 3429-38.

73 JH Bae, et al., “*6+-Gingerol suppresses interleukin-1 beta-induced MUC5AC gene expression in human airway epithelial cells,” American Journal of Rhinology & Allergy 23.4 (2009): 385-91.

74 JK Kundu, et al., “Ginger-derived phenolic substances with cancer preventive and therapeutic potential,” Forum

of Nutrition 61. (2009): 182-92.

75 MS Baliga, et al., “Update on the chemopreventive effects of ginger and its phytochemicals,” Critical Reviews in Food Science and Nutrition 51.6 (2011): 499-523.

76 T Ando, et al., “Ginger ingredients reduce viability of gastric cancer cells via distinct mechanisms,” Biochemical

and Biophysical Chemical Research Communications 362.1 (2007):218-23.

77 Nam E Kang, et al., “[6]-Gingerol inhibits metastasis of MDA-MB-231 human breast cancer cells,” The Journal of Nutritional Biochemistry 19.5 (2008): 313-319.

78 E-H Chew, et al., "6-Shogaol, an active constituent of ginger, inhibits breast cancer cell invasion by reducing matrix metalloproteinase-9 expression via blockade of nuclear factor-κB activation,” British Journal of Pharmacology 161.8 (2010):1763-1777.

79Srijit Das, et al., “Ginger Extract (Zingiber Officinale) has Anti-Cancer and Anti-Inflammatory Effects on Ethionine-

Induced Hepatoma Rats,” Clinics 63.6 (2008):807-813.

80 Ann M. Bode, et al. “[6]-Gingerol Suppresses Colon Cancer Growth by Targeting Leukotriene A

Cancer Research 69.13 (2009):5584-91. Hydrolase,”

81K. Kobata, “A nonpungent component of steamed ginger--[10]-shogaol--increases adrenaline secretion via the activation of TRPV1,” Nutritional Neuroscience 9.3-4 (2006):169-78.

82 Sebastian Pole, Ayurvedic Medicine (Philadelphia, PA: Elsevier, 2006) 183.

83 Sebastian Pole, Ayurvedic Medicine (Philadelphia, PA: Elsevier, 2006) 184.

84 MY Henein and R. Nicoll, “Ginger (Zingiber officinale Roscoe): a hot remedy for cardiovascular disease?”

International Journal of Cardiology 131.3 (2009):408-9.

85AJ Ammit, et al. “Gingerols and related analogues inhibit arachidonic acid-induced human platelet serotonin release and aggregation,” Thrombosis Research 103.5 (2001):387-97.

86KK Al-Qattan, et al., “The use of ginger (Zingiber officinale Rosc.) as a potential anti-inflammatory and antithrombotic agent,” Prostaglandins, Leukotrienes, and Essential Fatty Acids 67.6 (2002):475-8.

87A. Bordia, et al., “Protective effect of ginger, Zingiber officinale Rosc on experimental atherosclerosis in rabbits,” Indian Journal of Experimental Biology 42.7 (2004):736-8.

88 M. Mokhtari, et al., “Ginger extract reduces delayed gastric emptying and nosocomial pneumonia in adult respiratory distress syndrome patients hospitalized in an intensive care unit,” Journal of Critical Care 25.4 (2010):647-650.

89 David Frawley and Vasant Lad, The Yoga of Herbs (Twin Lakes, WI: Lotus Press, 1992) 121.

90 “NICE Clinical Guidelines, No. 62,” Antenatal Care: Routine Care for the Healthy Pregnant Woman. London: National Collaborating Centre for Women’s and Children’s Health (UK), RCOG Press, 2008.

91 Torben Brask, et al., “Ginger Root Against Seasickness: A Conctrolled Trial on the Open Sea,” Acta Oto- laryngologica 105.1-2 (1988):45-49.

92 N Chaiyakunapruk, et al., “The efficacy of ginger for the prevention of postoperative nausea and vomiting: a meta-analysis,” American Journal of Obstetrics and Gynecology 194.1 (2006):95-99.

93 Owyang Chung, et al., “Effects of ginger on motion sickness and gastric slow-wave dysrhytmias induced by circular vection,” American Journal of Physiology 284.3 (2003):G481-G489.

94 John Lust, The Herb Book (New York: Benedict Lust Publications, 2005) 206.

95 SK Chuau, et al., “Effect of Ginger on Gastric Emptying and Motility in Healthy Humans,” European Journal of Gastroenterology and Hepatology 20.5 (2008): 436-440.

96 Sebastian Pole, Ayurvedic Medicine (Philadelphia, PA: Elsevier, 2006) 184.

97 Karta Purkh Singh Khalsa and Michael Tierra, The Way of Ayurvedic Herbs (Twin Lakes, WI: Lotus Press, 2008) 136.

98 Karta Purkh Singh Khalsa and Michael Tierra, The Way of Ayurvedic Herbs (Twin Lakes, WI: Lotus Press, 2008)

138.

99 Daniel P. Reid, Chinese Herbal Medicine (Boston: Shambhala Publications, Inc., 1986) 116.

100 Michael Tierra, Planetary Herbology (Santa Fe, NM: Lotus Press, 1988) 154, 244.

101 Robyn Landis with Karta Purkh Singh Khalsa, Herbal Defense (New York: Warner Books, 1997) 302.

102 MY Henein, and R. Nicoll, “Ginger (Zingiber officinale Roscoe): a hot remedy for cardiovascular disease?”

International Journal of Cardiology 131.3 (2009):408-9.

103 Yuhao Li, et al., “A 35-day gavage safety assessment of ginger in rats.” Regulatory Toxicology and Pharmacology

 
 
 
 
 
 
 
 
 
 
 

 

Coriander The Wealthy One (By Dr. Khaled Haidari DDS)

1. Introduction
2. Botanical description
3. Ayurvedic description
4. Uses
5. Herbal Combinations
6. Contraindications and interactions with drugs and minerals
7. Conclusion
8. End notes
9. Abstracts
 

1. Introduction

   Coriander is an amazing herb that is used for culinary and medicinal purposes. From the oldest times it is known in the Mediterranean region, Africa and the Middle East, central Asia, India and China.1 The old Greeks, Egyptians and Romans were familiar with it. Pliny (Plinius), the famous Roman historian, tells us that “the best coriander came from Egypt’”.2 It is also very popular in Latin America, and it is getting more appreciated in the West. It appears under many names because of its use in many places and times. From the old Sanskrit name kustambari, many modern versions are derived such as the Indonesian kutumbar and the Tamil kotamali. There is another reference from the Persian geshniz being the basis for the central Asian names. In Arabic it is known as kzbara. Most of the European names originate from the Latin coriandrum or the Greek corianon. In English coriander leaves are often referred to as cilantro and the fruits as coriander. The fruits are also known as seeds. Coriander is also found under the names Indian parsley or Chinese parsley because of the close resemblance to its cousin parsley.1
   
   In India it is known as dhanya or dhanyaka, which means “the rich one”.3 It deserves its name because of its many
culinary and medicinal uses.
   
   For culinary purposes, some regions prefer the fruit and others, the leaf. Most of the people like the taste of the fruit and would describe it as warm, nutty and spicy. Some even find an orange-like quality. The leaves are appreciated by almost everyone in Asia and Latin America, and they are described as fresh, green, tangy and even citrusy. Central and Northern Europeans are on average not very fond of the taste and would describe it as soapy, like burnt rubber, or even like crushed bed bugs. Coriander is very good in bringing together the aromas of different spices. That is the reason why it is found in spice mixes even in regions where it is not used separately.1 It is less known that a very deep knowledge was used in designing the curry and spice blends in which coriander is an important component. The intention was to balance and heal.4 Using food as medicine is an important idea of Ayurveda and other systems that developed from it. Another use is in preparing medicines for an amazing variety of health problems with studies confirming the old knowledge and opening new possibilities. The treasure of the “rich one” is immense, and it is very exciting to explore it.
 

2. Botanical description

   The botanical name is Coriandrum sativum. It is classified in the family Apiaeceae, formerly known as Umbeliferaeae.5 This family is also known as the carrot family and has many important members, such as anise, asafetida, caraway, celery, dill, fennel, and parsley.60
 
-Parts used – Fruit and fresh leaves.
-Description: Coriander is an annual with erect stems, 1-3 feet high, slender and branched. The lowest leaves are stalked and pinnate, the leaflets roundish or oval, slightly lobed. The segments of the uppermost leaves are linear and more divided. The flowers are in shortly-stalked umbels, five to ten rays, pale mauve, almost white, delicately pretty. The seed clusters are very symmetrical, and the seeds fall as soon as they are ripe. They are quite round like tiny balls. They lose their disagreeable scent on drying and become fragrant. The plant is bright green, shining, glabrous and intensely fetid. Gerard describes it as follows:
   
   “The common kind of Coriander is a very striking herb. It has a round stalk full of branches, two feet long. The leaves are almost like the leaves of the parsley, but later on become jagged, almost like the leaves of Fumitorie, but a great deal smaller and more tender. The flowers are white and grow in round tassels like Dill.”
Cultivation: “Coriander likes a warm, dry, light soil, though it also does well in a somewhat heavy soil… It is sown in mild, dry weather in April, or in the wormer month of March.”
 
     “As the seeds ripen, about August, the disagreeable odor gives place to a pleasant aroma and the plant is then cut down with sickles and when dry the fruit is threshed out.”
 
   The parts used are: the fruit and sometimes the fresh leaves for salads and soups. The fruit (so-called seeds) are of globular form, beaked, finely ribbed, yellowish brown, 1/5 inch in diameter, with five longitudinal ridges, separable into two halves (the mericarps), each of which is concave internally and shows the broad, longitudinal oil cells (vittae). The seeds have an aromatic taste and when crushed, a characteristic odor.2
 
   This plant is a native of the Mediterranean region and is intensively grown in India. It is cultivated in all the states and is an important subsidiary crop in the black cotton soils of the Deccan and south India and is also important in North India.6 “The coriander grown in Russia and central Europe (var. microparcum) has smaller fruits less, than 3 mm, and contains more essential oil than the oriental variety ( var.vulgare), which is greater than 3 mm and is cultivated for fruits and leaves.” 1
Constituents- Coriander fruit contains about 1 percent of volatile oil, which is the active ingredient. It is pale yellow or colorless, and has the odor of Coriander and a mild aromatic taste.2 Terpene alcohols are the main component and up to 80 % goes to linalool. 7 Its essential oil consists of linalool called coriandrol (60-70 %), geraniol and borneol .8 The volatile oil also has anethole, camphor and limonen. Coriander essential oil has flavonoids: rutin, quercetin, apigenin, coumarins: psoralen, angelcin, umbeliferone, phenolic acids and phtalides (Williamson 2003) 3. The fruit yields about 5 percent of  ash and also contains malic acid, tannin and some fatty mater.”2 Some more components are Beta-sitosteral, D-mannital, flavonoid, glycosides, L-pinene, beta-phellandrene, 1,8-cineole,beta-caryophyllene, aflatocsins B1 and B2.6
 

3. Ayurvedic description

   According to Drayaguna Vijnana, the Gana or classification of coriander according to Ayrveda is Shitprashmana (Refrigerant) and Trishnanigrheneya (Thirst depressant). Synonyms are Dhania (Hindi), Dhanya, Dhanyaka, Kustumburu, Vitnnaka (Sanskrit), Coriander (English). Habitat: it is found in India. Rasa (taste): madhura (sweet), katu (pungent), tikta (bitter) and kshaya (astringent). Guna (physical property) is laghu (light) and snigadha. Virya (potency) is ushana (hot). Vipaka (post digestion effect) is madhura (sweet). Pacifying Vata, Pitta and Kapha dosha. Karma (action) is  trishnanigrhena (thirst depressant) It is used in fevers, loss of appetite and indegestion. Parts used are fruits and oil. Dose
1-3 g. 9
   
   Formulations based on Dnayaka are Dhanyapanchaka kwatha and Dhanyakadi hima (Coriander water). (drayaguna vijnana). Dhanyapanchaka Kwatha churna, Satamolyadi Lauha, Ernada Paka, Dhanyadi Lima, Bhaskar Lavana Curna. 10
In the Indian Materia Medica we will find that “Dhanyaka is astringent, bitter and sweet in taste, cardiac tonic, digestive stimulant and carminative. It cures casa (coughing), trt (morbid thirst) and chardi (vomiting). It is useful for the eyes. Green kustumbari (dhanyaka), when used in different ways, imparts good taste, fragrance and cardiac tonic property to various excellent types of vegetables. The dried kustumbari is sweet in vipaka and unctuous. It cures trt (morbid thirst), daha (burning) and aggravated doshas. It is slightly pungent and bitter. It cleanses the channels of
circulation.” 11
 
   It belongs to the group of herbs known as Guducuyadi gana which according to Arogya cintamani also consists of guduci, nimba, padmaka and rakta candana. The Dravaguna Vijnana gives information from Susruta according to whom drugs belonging to this group cure trsna (morbid thirst), daha (burning syndrome), aruci (anorexia), chardi (vomiting) and jvara (fever). They also stimulate the power of digestion.12
   
   It is also an alterative, diaphoretic, diuretic and carminative according to “The Yoga of Herbs” by Dr. Frawley and Dr. Lad.13
   
   In Dr. Tierra’s “Planetary Herbology” the seeds of Coriander have a neutral energy, and the leaves are cooling.
Benefitted organs are the bladder and stomach. It is carminative, aromatic and diuretic.8
   
   According to Sebastian Pole, the virya (energy) is cooling (leaves) and warming (seed). Its Ayurvedic actions are dipana (appetite stimulant), amapacana (toxin digester), sulaprasamana (alleviates intestinal spasms), dahaghna (alleviates burning in the body), agmimandyanasaka (aleviates sluggish appetite), trshaghna (alleviates thirst), hrdaya (lifts the spirits), krmighna (warm killer), mutrala (diuretic), kusthaghna (alleviates hot skin conditions).3
   
   Dr. Kurt Schaubelt states, “Because of the high linalool content, this oil is tonifying and strengthening. In addition, a series of coumarin compounds together with linalool provide a mild euphoric effect.” 7
 

4. Uses

   “Coriander seeds are a good household remedy for many pitta disorders, particularly those of the digestive tract or urinary system.” 13    They can be used together with burdock seeds, which have similar indications.14
   “This popular Indian curry ingredient is also an invaluable medicine; it soothes an irritated digestive system and cools any burning sensations in the body. Its sweet aroma subtly lifts the spirits. Dhanyaka is a proper noun also meaning rich.” It is used in dosages 1-30 g/day or 3-15 ml/day of a 1: 3@45 % tincture. It is often used with sugar to increase the anti-pitta effect. 3
 
 
Digestion. Coriander seed is an excellent remedy for promoting Pitta digestion as it enkindles agni but does not aggravate acidity. It is safe to use when there is an inflammation in the digestive system and agni needs strengthening. It is prescribed in IBS (irritative bowel syndrome) and colic. Both the leaf and the seed are used to clear flatulence, gripping and bloating.3 For gas and indigestion a tea can be prepared: an infusion with the seeds.15
 
   It is an effective digestive agent for Pitta conditions in which most spices are contraindicated or used with caution. Often used together with fennel and cumin which are related plants with similar properties for digestive disorders, mainly owing to high Pitta, and are also used together in various formulations to promote the assimilation of the other herbs.13
 
    Coriander can be used roasted alone or with fennel and cumin, one teaspoon after meals for cramping and flatulence.16
  For pitta type bloating where symptoms of high pitta such as hyperacidity, diarrhea, heartburn and irritability appear along with gas, cool carminatives -- among which is coriander -- should be combined with bitters (gentian, barberry, goldenseal, katuka). Coriander, fennel and cumin should be taken in equal parts, ¼ teaspoon before meals.17
 
   It is also useful for vata and kapha because of its digestion enhancing quality, although in small amounts. It is useful for flatulence and indigestion.6
 
“ The curry powder characteristic of the Indian cooking was originally a therapeutic blend of spices. It included turmeric, cumin seed, coriander, ginger, asafetida and chili pepper along with garlic and onions sautéed in ghee (clarified butter).4 The basis of Indian curry is three important spices: cumin seed which is heating, carminative and with a strong spicy flavor; coriander seed which is cooler and has a milder spicy flavor and turmeric root, pleasantly bitter and only slightly spicy tasting, imparts a golden color to the food. It has liver detoxifying, blood moving and digestive properties. These three spices used together are balanced within themselves and are most important in promoting optimal digestion and assimilation of complex carbohydrates.”18
 
Urinary tract.For urinary tract infections, burning urethra and cystitis. It is a cooling diuretic.19 It combines well with fennel.16
 
   It is specific for strengthening of the urinary tract. The seeds and the leaves can both be used as an infusion for infections of the urinary tract.8
 
   A cold infusion of the seeds is used for draining heat out of the urinary system. Useful in cystitis, dysuria and cloudy urine (bhavaprakasa). 3 Warm infusion is also advised for burning on urination. This tea makes the urine more alkaline.15    One formula for urinary tract infections with burning urination is: coriander, pipsissewa, plantain, Marshmallow, lemon grass and gotu kola in equal parts, 1-2 teaspoons of cut and sifted herbs in 1 cup of hot water every few hours.20
 
   Kidney flash procedure done after one day of fasting consists of drinking one or two quarts of water with a small amount of mild diuretic herbs, like coriander, parsley and lemon grass the following morning.21
 
Edema. Cilantro is used as a mild diuretic which is good in order not to over stimulate the kidneys.22 ”Excess moisture of the body is dried out by coriander.” 23 Used as a decoction, it is useful for treating the swelling during pregnancy starting from the fifth month.24
 
High blood pressure. Here, its property of being a good diuretic is used.53
 
Burns 13
 
Allergies, hay fever, skin rushes, urticaria. The fresh juice of the herb is effective internally, but it can also be used externally for itch and inflammation. One teaspoon three times a day.13    Skin rash is treated with an application of the pulp of cilantro leaf directly or by taking coriander tea, 1 tsp. to 1 cup of water.26 “Coriander may be used internally for allergic rhinitis of pitta origin (Frawley & Lad 1994).” 3    When used internally it helps purify the blood and externally relieves the burning sensation. It is also applied for dermatitis. 15
 
Coriander is used to increase digestive fire and regulate digestive function in pitta patients with allergies. 25
 
Food poisoning/radiation: In 1 cup of miso soup add 1 tsp. of ghee and ½ tsp each of coriander and cumin powder.27 A Romanian study shows coriander being an excellent antibacterial and antifungal, effective against staphylococcus, streptococcus, E. coli, salmonella and Candida albicans. The study suggests industrial use for coriander as a food preserver.54
 
Vomiting 11’12 Warm infusion of the seeds is used and also helps with nausea.15
 
Temporal headache: that indicates excess pitta in the stomach. That can be relieved by drinking a tea of cumin and coriander seeds, ½ tsp each in one cup of hot water. This goes with an application of sandalwood oil or paste to the temples.28
 
 
Poison bites and stings: drink cilantro juice.26
 
Parasites. The powder of the seed is used for worms in children. 3    A decoction of the seeds is used effectively.29
 
Eye infections. Eyes are rinsed with a cooled decoction of the seeds.24
 
Diabetes. Coriander is beneficial in the hot, pitta type diabetes (pittaja prameha).3  This herb has a hypoglycemic effect; it lowers the glucose level in the blood.43
 
Hot flashes 3
 
Respiratory system. It is used for sore throat 13. It is useful for coughs 11 when combined with licorice and pippali 3. Another way is ground coriander seeds mixed with honey in the 1:2 ratio. 24
 
For pitta-type asthma coriander is applied in the anti-pitta diet. 31
 
Coriander helps clean mucus from the lungs with its antispasmodic and expectorant properties. (Paranpje 2001) 3
 
Detoxifying herb. Coriander helps to clean the body from the cell up 6. The leaf is used to facilitate the safe excretion of heavy metals and other environmental toxins such as lead, arsenic and mercury. It must be used in drop-by-drop doses accompanied by chlorella, an intestinal heavy metal toxin agent.3
 
Fever. Resolves fevers. 23 The seeds are a mild diaphoretic and they can help alleviate a fever by allowing the displaced agni, pitta and ama to be released through the skin and urine. 3 It is also a cooling diuretic. 19’12
 
Measles.32
 
Small pox. It was used for treating of this horrible and now extant disease.33
 
Colds. Coriander is “particularly useful when a person has a cold.” 23    The essential oil applied externally helps alleviate the body aches.29
 
Morbid thirst. 11’12 A cold infusion is used with some honey.24
 
Anorexia. 12
 
Liver, hepatitis. Coriander is a mild spice that helps promote liver energy and improve the appetite when the liver is sluggish or congested. It is used as a spice for cooking or tea, before or after meals.34 During the treatment of hepatitis, after a mono diet of mung beans for 1-2 weeks, basmati rice can be added to make kicharee, along with coriander, turmeric and other liver cleansing spices. Mainly bitter herbs are indicated with bile clearing, blood cleansing and mild purgative action. Here aloe vera is used with small amounts of turmeric and coriander, 1-2 teaspoons before meals.35
 
   For milder cases of gall stones, corn silk tea, 1 ounce per pint of water with 1 teaspoon of coriander, taken daily is effective. Most herbs for urinary stones help clear gall stones as well when combined with coriander to conduct the action to the liver area. One formula is coriander, turmeric, barberry, gravel root and corn silk in equal parts. 36
 
   It has a hepato-protective effect, reducing the liver weight and clearing the fat and necrosis. 55
 
Epistaxis or nose bleeds. Coriander tea is used in this case. 37 Also, a paste of green coriander leaves can be applied on the forehead, and the patient should inhale the aroma of fresh coriander leaves.38
 
Cleansing of the channels of circulation. 11 ”It opens the subtlest networks of the veins.” 23
 
Weakened immunity. Therapy for weakened immunity (according to Franchomme) starts with two days of intense treatment with essential oils containing phenol (oregano or thyme) and then starts with steadily decreasing them and introducing oils that contain terpene alcohol (coriander, eucalyptus, tea tree, thyme etc.) that are to be applied alternately.39
 
AIDS. Equal parts coriander, gotu kola, sarsaparilla, ashwaghandha, shatavari, gokshura and sandalwood.30
 
Increasing of the milk flow.23
Increasing of the menstrual flow.23
Excessive menstrual bleeding Take coriander with rice water and fresh cilantro leaves.24
 
Boldness, scalp problems and prevention of grey hair. The oil is used 23 or fresh juice made of the leaves.24
 
Insect repellant. The smoke of the burning seed is an effective insect repellant.23
 
Arthritis. Coriander is traditionally used for arthritis, and a study shows that its swelling-decreasing action is based on the anti-inflammatory property.56    Linalool has an anti-inflammatory action.40    The essential oil is applied by massaging the painful joint.29 If no oil is available, a decoction of crushed seeds is used to soak a cloth and place it on the joint. The cloth has to be warm. (anecdotal)
 
Halitosis (bad breath). Chewing of a few seeds as needed takes care of the problem.24
 
Antifungal. A study on the effect of coriander essential oil on Candida albicans isolated from the oral bio film of patients with periodontal disease shows that it has a strong antifungal activity which gives it a good potential to be used in a new antifungal preparation. 57 ’54
 
Anti-anxiety. Its extract applied in certain doses on mice has an anti-anxiety effect comparable to diazepam, according to a study. 58 It is believed the effect is due to the linalool.40
Insomnia. A paste made of the green leaves is placed on the forehead or is taken orally as a juice of the leaves or by chewing the leaves.24 Linolool is proven to induce sleep.40  For this purpose in the Unani Tibb system the seeds are used as an infusion.41
Stress. It is relaxing because of the linalool component. 40
Promotes good memory. 29
Cholesterol and triglyceride lowering. It is proven by a study that coriander seeds significantly reduce the level of cholesterol and triglycerides after a diet high in fats. HDL is increased. It is believed that this is due to the enhanced hepatic bile acid synthesis and increased degradation of cholesterol to fecal bile acids and neutral sterols. 59
Diarrhea. Chewing coriander seeds is recommended. 42
 

6. Herbal Combinations

- With fennel, cumin and cardamom for digestive upsets 3 and with fennel for urinary problems. 19
- Gokshura, manjishta and punarnava for urinary problems, especially stones and burning. 3
- Sariva and pit shirisha for skin allergies.
- With vasa for respiratory allergies.3
- Licorice and pippali for cough 3
- Fresh ginger for fever. 3
- Coriander seeds work well together with burdock seeds, which have similar indications. 14
- Together with betel leaves, it is used to flavor food, as a purgative and to prevent gripping (with meals) 6
 

7. Contraindications and interactions with drugs and minerals

   According to Pole, “There are no known contraindications and drug-herb interactions for Coriander. The herb is very safe.” 3. Dr. Schnaubelt also states that there are no known contraindications. 7    So coriander is considered to be a very safe herb, but there is some advice on avoiding the coriander essential oil in the first three months of pregnancy due to its mildly stimulating effect. 40
   Many members of the Apiaecae family, formerly known as Umbelliferae (or the carrot family), are more prone than other species to causing allergic reactions. Among them is contact dermatitis due to handling or local application. This can sensitize to other members of the family. Aside from coriander, members of this family are anise seed (Pimpinella anisum), asafetida (Ferula spp.), caraway (Carum carvi), celery seeds, root or stalks (Apium graveolens), dill
(Anethum graveolens), fennel (Foeniculum vulgare), parsley leaves (Petroselinum sativum) and Queen Anne’s lace (Daucus carota).44
   In some cases there is interaction between vitamin supplements taken in high doses and drugs or minerals. That interaction can work in two ways. Drugs and minerals can lower the vitamin absorption and reduce its serum levels, or increase its metabolism and excretion. In those cases it is good using plants that contain the vitamin that is deficient.45 Another way of interaction is when the vitamin or mineral can raise the drug or mineral serum levels or reduce their effect.
   Many people take mineral supplements, and interactions with drugs are documented. Consumption of herb sources that contain the mineral is not going to cause the same effect, but it has the potential of exacerbating it (when a supplement is used). Herbs are an adequate source of minerals when high potency mineral supplements cannot be used due to drug interactions. Mineral elements have a toxic potential when used in excessive quantities. This is a point that goes in favor of using natural sources of mineral ingredients instead of high concentrations of mineral inorganic
supplements. 46
   Cilantro leaves are rich in calcium. 47 Calcium as carbonate has interactions with some drugs and minerals.
Documented in human studies, cilantro lowers the serum level or effects of levothyroxine, and in the case of tetracycline leads to insufficiency. Drugs that lower the calcium serum level leading to insufficiency are corticosteroids, gentamicin, phenobarbital, phenolphthalein, phenytoin, tetracycline and viomycin. 48
   The leaves of this beautiful herb are also rich in iron. 49    It is documented in human studies that iron lowers the
serum level or effects of doxycycline, levodopa, methacycline, methyldopa, minocyclyne, oxytetracycline and thyroxine, causing an insufficient effect. It lowers trientine without causing insufficiency. Drugs that lower the serum iron levels leading to insufficiency are caffeine, calcium carbonate, chloramphenicol, tetracycline, trientine and vitamine E. 50
   Cilantro leaves are rich with magnesium. Digoxin, gentamicin and viomycin lower the magnesium, causing insufficiency, as proven by studies in humans. 51
    It is also a source of potassium. Acetazolamide, carbenicillin, carbenoxolone, cephalothin, clindamycin, gentamicin and penicillin lower its serum levels or efficiency, causing insufficiency. Spironolactone causes an increase to toxic levels.52
   This herb has a hypoglycemic effect. It lowers the glucose level in the blood. Insulin-dependent diabetics (type I) who take coriander have to monitor their blood glucose level not only because of the need to prevent high glucose level, but also to be able to avoid hypoglycemic episodes. It is possible to have insulin shock as a result of the combined actions of the insulin and the hypoglycemic herb.43
 

8. Conclusion

   Coriander is a herb well known since ancient times in vast parts of the world from the Mediterranean basin to   India and China. Both its dried fruits and the fresh leaves with the stem known as coriander and cilantro, respectively, are used for culinary and medicinal purposes. Even the culinary applications have a medicinal background. They were originally designed to balance the food and facilitate digestion. As part of the food, the herb is also useful for controlling bad breath and is a source of vitamin C, magnesium, potassium, calcium and iron. Different cultures have different preferences between the seeds and the leaf, and the number of applications is huge.
   The purely medicinal use is also very developed with a big variety of problems that are treated and many different formulas and ways of preparations. Corainder is considered to be very safe. The most widely-known use is for digestive problems where it improves the digestion, stokes the agni (digestive fire) without aggravating pitta and increasing acidity. It is very useful for flatulence, gripping and bloating.
   Another well known use of coriander is for urinary tract problems that are connected with burning urination and infections. It is a mild diuretic, great for the task because it will not overwhelm the kidneys with excessive activity. It is also strengthening to the urinary system. Kidney stones are prevented with a kidney flush with coriander. Its diuretic property will be useful in treating edema and high blood pressure.
 
   Coriander has a detoxifying action for various toxins, which, interestingly, is used for poisoning with metals. It is also cleansing to the liver and cleans the fat and necrosis in it. Coriander is effective in simple cases of gall stones. Most herbs that act on urinary tract stones will have an effect on gall stones when coriander is used as a carrier to conduct their action to the liver.
   Studies are proving its great ability in treating bacterial and fungal infections and parasites. The traditional use is in eye infections, colds, food preserving and parasites in children.
   Coriander has hypoglycemic action (reducing blood glucose), which makes it very useful in diabetes. It is proven to lower the “bad” cholesterol and triglycerides. In the long list, coriander also helps with excessive or insufficient menstruation, allergies, skin problems, burns, baldness, measles, nose bleed, increasing blood flow, treating thirst and working as an insect repellant.
   When we consider coriander’s proven uses, the studies opening new avenues for applications, as well as its safety, the inevitable conclusion is that this formidable herb, coriander, rightfully deserves its name dhanyaka, which means “rich” or “wealthy”. It can also be said that we are immensely enriched by it.
 

 9. End Notes

1. Gernot Katzer’s Spice Pages, Gernot Katzer, Coriander seeds and cilantro herb.  http://www.uni-   graz.at/~katzer/engl/Cori_sat.html#disc
2. Botanical.com, M. Grieve, Coriander. http://www.botanical.com/botanical/mgmh/c/corian99.html
3. Sebastian Pole,: Ayurvedic Medicine, Principles of Traditional Practice (Philadelphia, Pa: Elsevier Ltd. 2006) 165
4. Michael Tierra, C.A., N.D.,O.M.D., Planetary Herbology, an Integration of Western Herbs Into The Traditional Chinese and Ayurvedic Systems (Twin Lakes, Wi: Lotus Press, 1988) 100
5. Francis Brinker, N.D.; Herb Contraindications and Drug Interactions (Sandy, Or: Eclectic Medical Publications, 2001) 209,210
6. Charu Mahawar;Alka Agarwal,“Ayurveda Wonder Foods-Spices”,Light on Ayurveda Journal,Vol. VIII,Issue 1,(Fall 2009):39
7. Kurt Schaubelt, Ph.D.; Advanced Aromatherapy, The Science of Essential Oil Therapy (Rochester, Ve: Healing Arts Press, 1998) 66
8. Michael Tierra, C.A., N.D., O.M.D.; Planetary Herbology, an Integration of Western Herbs Into The Traditional Chinese and Ayurvedic systems (Twin Lakes, Wi: Lotus Press, 1988) 219
9. Dr. Amritpal Singh, Drayaguna Vijnana ( Delhi:Chaukhambha Orientalia, 2005) 115
10. Charu Mahawar;Alka Agarwal,“Ayurveda Wonder Foods-Spices”, Light on Ayurveda Journal, Vol. VIII, Issue 1,(Fall 2009)40
11. Vaidya Bhagwan Dash & Vaidya Lalitesh Kashyap, Materia Medica of Ayurveda Based on Ayurveda Saukham of Todarananda (New Delhi, Naurang Rai, Concept publishing company, 1979) 41,42
12. Vaidya Bhagwan Dash & Vaidya Lalitesh Kashyap,  Materia Medica of Ayurveda Based on Ayurveda Saukham of Todarananda (New Delhi, Naurang Rai, Concept publishing company, 1979) 420
13. Dr. David Frawley and Dr. Vasant Lad, The Yoga of Herbs, an Ayurvedic Guide to Herbal Medicine (Twin Lakes, Wi: Lotus press, 1986), 114
14. Dr. David Frawley and Dr. Vasant Lad, The Yoga of Herbs, an Ayurvedic Guide to Herbal Medicine (Twin Lakes, Wi: Lotus press, 1986) 106
15. Dr. Vasant Lad, Ayurveda The Science of Self Healing (Twin Lakes, Wi: Lotus press, 1984) 134
16. Dr. David Frawley and Dr. Vasant Lad, The Yoga of Herbs, an Ayurvedic Guide to Herbal Medicine (Twin Lakes, Wi: Lotus press, 1986), 117
17. Dr. David Frawley, Ayurvedic Healing, a Comprehensive Guide (Twin Lakes, Wi: Lotus press, 2000) 183,184
18. Michael Tierra, C.A., N.D., O.M.D., Planetary Herbology, an Integration of Western Herbs Into The Traditional Chinese and Ayurvedic Systems (Twin Lakes, Wi: Lotus Press, 1988)422
19. Dr. David Frawley and Dr. Vasant Lad, The Yoga of Herbs, an Ayurvedic Guide to Herbal Medicine (Twin Lakes, Wi: Lotus press, 1986) 61
20. Dr. David Frawley, Ayurvedic Healing, a Comprehensive Guide (Twin Lakes, Wi: Lotus press, 2000) 233
21. Dr. David Frawley, Ayurvedic Healing, a Comprehensive Guide (Twin Lakes, Wi: Lotus press, 2000) 229
22. Dr. David Frawley, Ayurvedic Healing, a Comprehensive Guide (Twin Lakes, Wi: Lotus press, 2000) 232
23. Shaykh Hakim Moinuddin Chishti, The Book of Sufi Healing (Rochester, Ve: Inner Traditions International, 1991) 57
24. Online-health-care.com, Health Care Staff, Coriander (Dhaniya) uses and benefits. http://www.online-health-   care.com/herbal-medicines/coriander.htm
25. Dr. David Frawley; Ayurvedic Healing, a Comprehensive Guide (Twin Lakes, Wi: Lotus press, 2000) 158
26. Dr. David Frawley and Dr. Vasant Lad, The Yoga of Herbs, an Ayurvedic Guide to Herbal Medicine (Twin Lakes, Wi: Lotus press, 1986), 227
27. Dr. David Frawley and Dr. Vasant Lad, The Yoga of Herbs, an Ayurvedic Guide to Herbal Medicine (Twin Lakes, Wi: Lotus press, 1986) 225
28. Dr. David Frawley and Dr. Vasant Lad, The Yoga of Herbs, an Ayurvedic Guide to Herbal Medicine (Twin Lakes, Wi: Lotus press, 1986) 226
29. Naturaltherapypages.com, Natural Therapy Pages Staff, Coriander.  http://www.naturaltherapypages.com.au/article/coriander
30. Dr. David Frawley; Ayurvedic Healing, a Comprehensive Guide(Twin Lakes, Wi: Lotus press, 2000) 266
31. Dr. David Frawley; Ayurvedic Healing, a Comprehensive Guide (Twin Lakes, Wi: Lotus press, 2000) 206
32. Medicinal and Aromatic Plant Home Page, Medicinal and Aromatic Plant Home Page Staff, Coriander.  http://www.hort.purdue.edu/newcrop/med-aro/factsheets/CORIANDER.html
33. Organic facts.net, Apurup Mukherjee, Health Benefits of Coriander. http://www.organicfacts.net/health-benefits/herbs-   and-spices/health-benefits-of-coriander.html
34. Dr. David Frawley; Ayurvedic Healing, a Comprehensive Guide (Twin Lakes, Wi: Lotus press, 2000) 153
35. Dr. David Frawley; Ayurvedic Healing, a Comprehensive Guide (Twin Lakes, Wi: Lotus press, 2000) 154
36. Dr. David Frawley; Ayurvedic Healing, a Comprehensive Guide (Twin Lakes, Wi: Lotus press, 2000) 156
37. Dr. David Frawley; Ayurvedic Healing, a Comprehensive Guide (Twin Lakes, Wi: Lotus press, 2000) 221
38. Usefulhomeremedies.com, Usefulhomeremedies.com Staff, Nose Bleeding and Epistaxis,   http://usefulhomeremedies.com/nosebleeding.html
39. Kurt Schaubelt, Ph.D.; Advanced Aromatherapy, The Science of Essential Oil Therapy (Rochester, Ve: Healing Arts Press, 1998)121
40. Ezinearticles.com, K.G. Stiles, Research Linalool Properties-Immune Stimulant, Reduce Stress & Depression, Stimulant.   http://ezinearticles.com/?Coriander-Essential-Oil-Research-Linalool-Properties---Immune-Stimulant,-Reduces-Stress-and-   Depression&id=2923180
41. Liveandfeel.com, Live and Feel Staff, Benefits of Coriander Plant. http://www.liveandfeel.com/medicinalplants/coriander.html
42. Anxietydisorderpro.com, Anxietydisorderpro.com Staff, Coriander Herb-An Excellent Herb For Nourishment, Digestive Problems and Minimizing Bad Cholesterol. http://www.anxietydisorderpro.com/coriander-herb-an-excellent-herb-for-   nourishment-digestive-problems-and-minimizing-bad-cholesterol/
43. Francis Brinker, N.D., Herb Contraindications and Drug Interactions (Sandy, Or: Eclectic Medical Publications, 2001) 237,238,239
44. Francis Brinker, N.D., Herb Contraindications and Drug Interactions (Sandy, Or: Eclectic Medical Publications, 2001) 209,210
45. Francis Brinker, N.D., Herb Contraindications and Drug Interactions (Sandy, Or: Eclectic Medical Publications, 2001) 285,286
46. Francis Brinker, N.D., Herb Contraindications and Drug Interactions (Sandy, Or: Eclectic Medical Publications, 2001) 296, 297
47. Francis Brinker, N.D., Herb Contraindications and Drug Interactions (Sandy, Or: Eclectic Medical Publications, 2001) 301,
48. Francis Brinker, N.D.. Herb Contraindications and Drug Interactions (Sandy, Or: Eclectic Medical Publications, 2001) 299, 300, 301
49. Francis Brinker, N.D., Herb Contraindications and Drug Interactions (Sandy, Or: Eclectic Medical Publications, 2001) 303
50. Francis Brinker, N.D., Herb Contraindications and Drug Interactions (Sandy, Or: Eclectic Medical Publications, 2001) 302,303
51. Francis Brinker, N.D., Herb Contraindications and Drug Interactions (Sandy, Or: Eclectic Medical Publications, 2001) 304,305
52. Francis Brinker, N.D., Herb contraindications and Drug Interactions (Sandy, Or: Eclectic Medical Publications, 2001) 306,307
53. Healthy-ojas.com, Healthy-ojas.com Staff, Hypertension Herbs. http://healthy-ojas.com/pressure/hypertension-   herbs.html
54. BE Lixandru, NO Dracea, CC Dragomirescu, EC Dragulescu, IL Coldea, L Anton. E Dobre, C Rovinaru, I Codita, “Antimicrobial Activity of Plant Essential Oil Against Bacterial and Fungal Species Involved in Food Poisoning and/or Food Decay”, Romanian Archive of Microbiology and Immunology, 69(4)(October-December 2010):2   http://www.ncbi.nlm.nih.gov/pubmed/21462837
55. A Pandey, P Bigonya, V Raj, KK Patel, “Pharmacological Screening of Coriandrum Sativum Linn. For Hepatoprotective Activity “, Journal of Pharmacy and Bioallied Sciences,3(3)(July 2011): 435-41  http://www.ncbi.nlm.nih.gov/pubmed/21966166
56. V Nair, S Singh, YK Gupta, “Evaluation of Disease Modifying Activity of Coriandrum sativum in Experimental Models,”
Indian Journal of Medical Research 135(2) (February 2012): 240-245. http://www.ncbi.nlm.nih.gov/pubmed
57. VF Furletti, IP Teixeira, G. Obando-Pereda, RC Mardegan, A Sartoratto, GM Figueira, RM Duarte, VL Rehder, MC Duarte, JF Hofling, “Action of Coriandrum Sativum L. Essential Oil Upon Oral Candida Albicans Biofilm Formation.”, Evidence Based Complementary and Alternative Medicine, Epub (May 21, 2011) 985832  http://www.ncbi.nlm.nih.gov/pubmed/21660258
58. P Mahendra, S Bisht, “Anti-anxiety Activity of Coriandrum Sativum Assesed Using Different Experimental Anxiety   Models”, Indian Journal of Pharmacology,43(5)(September 2011):574-7 http://www.ncbi.nlm.nih.gov/pubmed/22022003
59. V Chitra, S Leelamma, “Hypolipidemic  Effect  of Corriander Seeds (Coriandrum Sativum): Mechanism of Action”, Plant Foods For Human Nutrition, 51(2)(1997):167-72 http://www.ncbi.nlm.nih.gov/pubmed/9527351
60. Francis Brinker, N.D., Herb Contraindications and Drug Interactions (Sandy, Or: Eclectic Medical Publications, 2001) 210
 

 10. Abstracts

These are the abstracts of the studies referred to in the paper.
 
Indian J Med Res. 2012 Feb;135(2):240-5.
 

Evaluation of disease modifying activity of Coriandrum sativum in experimental models.

Nair V, Singh S, Gupta YK.
Department of Pharmacology, All India Institute of Medical Sciences, New Delhi, India.
 

Abstract

Background & objectives: Coriandrum sativum (CS), has been widely used in traditional systems of medicine for treatment of rheumatoid arthritis. However, the mechanism of action for its antiarthritic effects is not clearly known. Therefore, the present study was carried out to evaluate the antiarthritic activity of CS in rats in two experimental models. Methods: The antiarthritic activity of CS seed hydroalcoholic extract (CSHE) was evaluated in adult Wistar rats by using two experimental models, viz. formaldehyde and Complete Freund's adjuvant (CFA) induced arthritis. The expression of pro- inflammatory cytokines (predominantly contributed by macrophages) was also evaluated. TNF- α level was estimated in serum by ELISA method. TNF-R1, IL-1 β and IL-6 expression in the synovium was analysed by immunohistochemistry. Results: CSHE produced a dose dependent inhibition of joint swelling as compared to control animals in both, formaldehyde and CFA induced arthritis. Although there was a dose dependent increase in serum TNF-α levels in the CSHE treated groups as compared to control, the synovial expression of macrophage derived pro-inflammatory cytokines/cytokine receptor was found to be lower in the CSHE treated groups as compared to control. Interpretation & conclusions: Our results demonstrate that the antiarthritic activity of CSHE may be attributed to the modulation of pro- inflammatory cytokines in the synovium. In further studies CSHE could be explored to be developed as a disease modifying agent in the treatment of RA.
 
Evid Based Complement Alternat Med. 2011;2011:985832. Epub 2011 May 21.
 

Action of Coriandrum sativum L. Essential Oil upon Oral Candida albicans Biofilm Formation.

 
Department of Microbiology and Immunology, Dental School of Piracicaba, University of Campinas-UNICAMP, 13414- 903 Piracicaba, SP, Brazil.
 

Abstract

The efficacy of extracts and essential oils from Allium tuberosum, Coriandrum sativum, Cymbopogon martini, Cymbopogon winterianus, and Santolina chamaecyparissus was evaluated against Candida spp. isolates from the oral cavity of patients with periodontal disease. The most active oil was fractionated and tested against C. albicans biofilm formation. The oils were obtained by water-distillation and the extracts were prepared with macerated dried plant material. The Minimal Inhibitory Concentration-MIC was determined by the microdilution method. Chemical characterization of oil constituents was performed using Gas Chromatography and Mass Spectrometry (GC-MS). C. sativum activity oil upon cell and biofilm morphology was evaluated by Scanning Electron Microscopy (SEM). The best activities against planktonic Candida spp. were observed for the essential oil and the grouped F(8-10) fractions from C. sativum. The crude oil also affected the biofilm formation in C. albicans causing a decrease in the biofilm growth. Chemical analysis of the F(8-10) fractions detected as major active compounds, 2-hexen-1-ol, 3-hexen-1-ol and cyclodecane. Standards of these compounds tested grouped provided a stronger activity than the oil suggesting a synergistic action from the major oil constituents. The activity of C. sativum oil demonstrates its potential for a new natural antifungal formulation.
 
Roum Arch Microbiol Immunol. 2010 Oct-Dec;69(4):224-30.
 

Antimicrobial activity of plant essential oils against bacterial and fungal species involved in food poisoning and/or food decay.

 
Cantacuzino" National Institute of Research-Development for Microbiology and Immunology, Bucharest, România.
 

Abstract:

The currative properties of aromatic and medicinal plants have been recognized since ancient times and, more recently, the antimicrobial activity of plant essential oils has been used in several applications, including food preservation. The purpose of this study was to create directly comparable, quantitative data on the antimicrobial activity of some plant essential oils prepared in the National Institute of Research-Development for Chemistry and Petrochemistry, Bucharest to be used for the further development of food packaging technology, based on their antibacterial and antifungal activity. The essential oils extracted from thyme (Thymus vulgaris L.), basil (Ocimum basilicum L.), coriander (Coriandrum sativum L.), rosemary (Rosmarinus officinalis L.), sage (Salvia officinalis L.), fennel (Foeniculum vulgare L.), spearmint (Mentha spicata L.) and carraway (Carum carvi L.) were investigated for their antimicrobial activity against eleven different bacterial and three fungal strains belonging to species reported to be involved in food poisoning and/or food decay: S. aureus ATCC 25923, S. aureus ATCC 6538, S. aureus ATCC 25913, E. coli ATCC 25922, E. coli ATCC 35218, Salmonella enterica serovar Enteritidis Cantacuzino Institute Culture Collection (CICC) 10878, Listeria monocytogenes ATCC 19112, Bacillus cereus CIP 5127, Bacillus cereus ATCC 11778, Candida albicans ATCC 10231, Aspergillus niger ATCC 16404, Penicillium spp. CICC 251 and two E. coli and Salmonella enterica serovar Enteritidis clinical isolates. The majority of the tested essential oils exibited considerable inhibitory capacity against all the organisms tested, as supported by growth inhibition zone diameters, MICs and MBC's. Thyme, coriander and basil oils proved the best antibacterial activity, while thyme and spearmint oils better inhibited the fungal species.
 
PMID: 21462837
[PubMed - indexed for MEDLINE]
 
Indian J Pharmacol. 2011 Sep;43(5):574-7.
 

Anti-anxiety activity of Coriandrum sativum assessed using different experimental anxiety models.

 
Department of Pharmacology, School of Pharmacy, Suresh Gyan Vihar University, Jaipur - 302 004, India.
 
 

Abstract

Interest in alternative medicine and plant-derived medications that affect the "mind" is growing. The aim of present study was to explore the anti-anxiety activity of hydroalcoholic extract of Coriandrum sativum (Linn.) using different animal models (elevated plus maze, open field test, light and dark test and social interaction test) of anxiety in mice. Diazepam (0.5 mg/kg) was used as the standard and dose of hydroalcoholic extract of C. sativum fruit (50, 100 and 200 mg/kg) was selected as per OECD guidelines. Results suggested that extract of C. sativum at 100 and 200 mg/kg dose produced anti- anxiety effects almost similar to diazepam, and at 50 mg/kg dose did not produce anti-anxiety activity on any of the paradigm used. Further studies are needed to identify the anxiolytic mechanism(s) and the phytoconstituents responsible for the observed central effects of the hydroalcoholic extract of C. sativum.
 
J Pharm Bioallied Sci. 2011 Jul;3(3):435-41.
 

Pharmacological screening of Coriandrum sativum Linn. for hepatoprotective activity.

 
Department of Pharmacology, Radharaman College of Pharmacy, Ratibad, Bhopal, Madhya Pradesh, India.
 
 

Abstract

OBJECTIVE: Coriandrum sativum (Linn.), a glabrous, aromatic, herbaceous annual plant, is well known for its use in jaundice. Essential oil, flavonoids, fatty acids, and sterols have been isolated from different parts of C. sativum. The plant has a very effective antioxidant profile showing 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity, lipoxygenase inhibition, phospholipid peroxidation inhibition, iron chelating activity, hydroxyl radical scavenging activity, superoxide dismutation, glutathione reduction and antilipid peroxidation due to its high total phenolic content with the presence of constituents like pyrogallol, caffeic acid, glycitin, etc.
 
MATERIALS AND METHODS: This study was aimed at investigating the hepatoprotective activity of C. sativum against carbon tetrachloride (CCl4), with estimation of serum serum glutamyl oxaloacetic acid transaminase (SGOT), serum glutamyl pyruvate transaminase (SGPT), alkaine phosphatase (ALP) and bilirubin, and with liver histopathology.
 
RESULTS: Ethanolic extract was found to be rich in alkaloids, phenolic compounds and flavonoids, and high performance liquid chromatography (HPLC) fingerprinting showed the presence of iso-quercetin and quercetin. C. sativum signifies hepatoprotection by reducing the liver weight, activities of SGOT, SGPT, and ALP, and direct bilirubin of CCl(4) intoxicated animals. Administration of C. sativum extract at 300 mg/kg dose resulted in disappearance of fatty deposit, ballooning degeneration and necrosis, indicating antihepatotoxic activity.
 
CONCLUSION The results of this study have led to the conclusion that ethanolic extract of C. sativum possesses hepatoprotective activity which may be due to the antioxidant potential of phenolic compounds.
 
PMID:
 
21966166
 
[PubMed]
 
Plant Foods Hum Nutr. 1997;51(2):167-72.
 

Hypolipidemic effect of coriander seeds (Coriandrum sativum): mechanism of action.

 
Department of Biochemistry, University of Kerala, Kariavattom, India.
 
 

Abstract

The effect of the administration of coriander seeds (Coriandrum sativum) on the metabolism of lipids was studied in rats fed a high fat diet with added cholesterol. The spice had a significant hypolipidemic action. The levels of total cholesterol and triglycerides decreased significantly in the tissues of the animals of the experimental group which received coriander seeds. Significant increases in beta-hydroxy, beta-methyl glutaryl CoA reductase and plasma lecithin cholesterol acyl transferase activity were noted in the experimental group. The level of LDL + VLDL cholesterol decreased while that of
 
HDL cholesterol increased in the experimental group compared to the control group. The increased activity of plasma LCAT, enhanced hepatic bile acid synthesis and the increased degradation of cholesterol to fecal bile acids and neutral sterols appeared to account for its hypocholesterolemic effect.
 
PMID: 9527351
[PubMed - indexed for MEDLINE]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Guduchi: The one who protects the body

By Carla Kennedy
December 2009

 

Guduchi is one of the most highly valued and common herbs in Ayurvedic medicine.  It has a rich history in the Indian sub-continent where it has been used and written about for thousands of years.   It is considered one of the best rasayanas (adaptogens) and is unusual in its potent versatility.   In recent years, significant progress has been attained regarding its biological activity and medicinal applications. 

    Guduchi, as it is most commonly called, has been described as “one which protects the body”. (Pole 189)  The Sanskrit and Hindi name Amrita is derived from ancient Hindu scriptures where Amrita was used to bring the dead back to life and keep gods from growing ill and old.  It is no wonder that it is also referred to as “nectar of immortality” and “heavenly elixir”.  Its scientific name is Tinospora cordifolia and is in the Family Menispermaceae.  Common names include: Guduchi, amrita (Sanskrit), giloya, amrita (Hindi), giloe, gulancha (Bengali), gado, galo (Gujarati), duyutige, teppatige (Telugu), heartleaf moonseed, Tinospora (English). (1, 2, 9, 11)

    It is a woody climbing shrub that is deciduous and perennial.  This herbaceous vine grows on hedges and trees.  It is often seen growing up mango or neem trees.  Herbalist Sebastian Pole writes that “those growing up neem trees are said to be the best as the synergy between these two bitter plants enhances guduchi’s efficacy.”  It is indigenous to areas of India, Myanmar, and Sri Lanka.  Guduchi typically grows in deciduous and dry forests at elevations up to 1000 ft.  Its flowers bloom in summer.  The male flower is small, yellow or green in color, and occurs in clusters.  Female flowers are usually solitary and are green.  The fruits are the size and shape of a large pea and turn from green to red when ripe in winter.  The leaves are heart shaped (giving the name cordifolia to the plant) and mucilaginous.  Its stems, when fresh, have a green succulent bark covered by a thin brown bark and are studded with warty lenticels.  When dry, the stem shrinks and the bark separate from the wood.  The roots are long narrow aerial roots that arise from the branches.  The stems, leaves, and roots are used in medicine.  All three parts should be collected in the summer when the bitter qualities are most abundant and, if not used fresh, dried in the shade.   Guduchi grows well without fertilizer or pesticide making it simple to grow.  It is easy to recognize and can be propagated by cuttings. (1, 2, 3, 4, 6)

Ayurvedic Qualities
    Guduchi has always been a very important herb in Ayurvedic medicine.  Ayurvedic herbalists generally describe it as having these qualities: (1) Rasa (taste): bitter and astringent, (2) Guna (quality): light and unctuous, (3) Virya (potency): heating, (4) Vipaka (post-digestive effect): sweet, (5) Prabhava (special action): destroys toxins both internally and externally, (6) Doshakarma (energetics): Tridoshic, VPK=.   Tridoshic in nature, its bitter and astringent properties and sweet post-digestive effect reduces pitta.  The bitter, astringent, and heating qualities reduce kapha.   Vata is reduced by its heat and sweet post-digestive qualities.  Its heat burns up ama yet doesn’t aggravate pitta and its sweet post-digestive effect gives it a nourishing rejuevenative quality.  (1, 2, 7, 9)

Actions and Indications
    Unusual in its qualities, Guduchi has a large variety of actions and is indicated in the treatment of many ailments.  Ayurveda traditionally describes the following actions: Increases appetite, quenches thirst, increases strength, promotes life, increases life span, aphrodisiac, increases sexual potency, purifier of sperm, cleans the blood, relieves gout, relieves arthritis, alleviates skin disorders, destroys toxins, reduces burning sensations, reduces fevers, nerve tonic, bitter tonic, causes constipation, and rejuvenative.  It is described in more modern and Western terms as having similar actions: Febrifuge, anti-periodic, alterative, diuretic, aphrodisiac, cholagogue, anti-inflammatory, anthelmintic, nerve tonic, bitter tonic, anti-rheumatic, and de-toxicant. (1, 2, 7, 9, 13)

    Guduchi is incredibly versatile and is indicated for potential use in the following conditions: Fever, hepatitis, liver damage, jaundice, diabetes, heart disease, tuberculosis, arthritis, gout, hemorrhoids, eczema, psoriasis, lupus, inflammatory skin conditions, autoimmune disease causing inflammation, urinary disease, secondary syphilis, bronchitis, chronic diseases of diarrhea and dysentery, seminal weakness, dyspepsia, general debility, leprosy, anemia, colic, worms, senile diseases, hyperacidity, and snake bite. (2, 7, 9)

Traditional Ayurvedic Preparations
    A potent classical herb, Guduchi is used as an important ingredient in a number of Ayurvedic formulations.  While the dried stem forms the raw material for many herbal preparations, the roots and leaves are also important.  The fresh plant is said to be more effective than the dry one.  However, it is traditionally dried and made into a starchy extract called Guduchi Sattva.   Dr. Gyanendra Pandey writes that Guduchi Sattva “is highly valued for many ailments.  Fevers, chronic diarrhea, chronic dysentery, burning sensation, secondary syphilis, chronic gonorrhea, leucorrhoea, jaundice, rheumatism, urinary disorders, and some other ailments”.  Dr. K.M. Nadkarni describes how it is made “The watery extract is prepared by powdering the stem and washing out the starch with water and drying the sediment.  Pandit Jayakrshna says “that as the deposit settles the sooner it is dried the better.  It is similar to arrow-root in appearance.”  Another common preparation is a watery extract, often called Indian quinine, which is used in malaria, leprosy, and common fevers due to cold or indigestion.  In the ancient text Caraka Samhita 50 great extract categories are described and Guduchi is included in two: Anti-saturative and refrigerant. (1, 2, 5)

Formulas from Caraka-an ancient physician
    The Caraka Samhita (written by Caraka between 1500BCE and 500BCE) is the oldest and perhaps the greatest classical text of Ayurveda.  It contains a vast amount of information on classical Ayurvedic herbal formulas.  Among them Chyavanprash is the most popular rasayana (rejuvenative tonic) formula in India today.  Like all traditional Ayurvedic formulas, the exact herbal combination can differ but most ingredients are the same.  At the end of Caraka’s description of the formula and how it is made he states “This is the famous “cyavanaprasa, an excellent rasayana.  Particularly it alleviates cough and dyspnoea, is useful for the wasted, injured and old people and promotes development of children.  It alleviates hoarseness of voice, chest diseases, heart disease, vatarakta, thirst and disorders of urine and semen.  It should be taken in the dose which does not interfere with the food (intake and digestion).  By using this (rasayana) the extremely old Cyavana regained youthful age.  If this rasayana is used by the indoor method, even the old attains intellect, memory, luster, freedom from diseases, longevity, strength of senses, sexual vigour, increased agni (digestion and metabolism), fairness of complexion and carmination of wind.  One, shedding the form of the old age, puts on that of the fresh youth.”(5)

     Charaka described over two dozen poly-herbal formulas that include Guduchi and that are used for a wide variety of ailments.  One un-named rasayana formulation is  stated  “If this formulation is used regularly for three years, the person attains a life-span of hundred years free from old age, acquires knowledge, his diseases are alleviated, poison becomes ineffective in his body which is rendered firm as stone and he becomes invincible foe the organisms.  Another was described as an “intellect-promoting rasayana drug”.  He states “…these rasayana drugs are life-promoting, disease-alleviating, promoters of strength, agni, complexion, voice and are intellect-promoting.” (5)

    He described a number of anti-pyretic formulas.  For chronic fevers, cold fevers, relapsing fevers and “certain fevers”.  One anti-pyretic formulation has these stated qualities “These extracts are antipyretic appetizer, digestive for dosa and alleviate thirst, anorexia and distaste of mouth.”  Two were to be used specifically for all types of prameha. There was also one for edema in vata combined with pitta. (5)

    A formulation Caraka called fifth alkali, “taken by those suffering from piles caused by kapha and vata, grahani disorder and anemia.  This alkali is an excellent promoter of agni and alleviates splenomegaly, retention of urine, dyspnoea, hiccup, cough, worms, fever, wasting, diarrhea, edema, prameha, hardness in bowels, cardiac pain and all kinds of poison.  After the drug is digested, the patient should eat with sweet meat-soups or milk.” (5)

     A medicated ghee called Guducyadi ghrta “alleviates gulma, dyspnoea, wasting and cough.  Guducyadi ghrta is mentioned in the Susruta Samhita where Susruta states “…would be attended by good results in cases of consumption, asthma, cough and chronic fever”.  One un-named formulation  “kept for whole night in water should be given to alleviate thirst and erysipelas”.   He also described one for disorders of the female genital tract and another for kaphaja vomiting.  And yet another formula for “vata vitiated … trembling of head” (5)
    The formula Amrta taila lists Guduchi as the main herb.  Caraka writes “This oil known as”amrta taila”is one of the best oils” “It brings back to normalcy the persons with diminished energy, agni and strength and confused mind and suffering from insanity, restlessness and epilepsy.  It is an excellent alleviator of vatika disorders.”  “This is delivered by the teacher Krsnatreya and is honoured by physicians.”   For Vrsamuladi taila he states “this oil should be used in patients broken and shattered by (disorders of) vata.”  Another oil has different qualities “This known as “Mulaka taila” (oil prepared with roots) alleviates spleen enlargement, retention of urine, dyspnoea, cough and vatika disorders and promotes complexion, life span and strength.” (5)
    Caraka thinks highly of Amrtadya taila.  “This oil when prepared is useful in all ways in vatarakta, wasting due to chest wound, afflicition by overload, deficiency of semen, trembling, convulsions, fractures and diseases generalized or localized.  This known as “Amrta” is the best among oil and alleviates diseases of female genital track, epilepsy, insanity, limping and lameness and makes delivery of fetus easy.” (5)

    Lastly, Caraka described a number of formulas for unctuous and non-unctuous enemas.  For one called Erandabasti  he states “Is appetizer and reducing and alleviates pain in shanks, thighs, feet, sacrum and back; covering by kapha, obstruction of vayu, retention of feces, urine and flatus, colic pain, tympanitis, calculus, gravels, harness of bowels, piles and disorders of grahani.”  Another un-named enema is stated “This oil used in forms of intake, massage and unctuous enema alleviates quickly the disorders of skin, worms, prameha, piles, disorders of grahani, impotency, irregularity of digestive fire, excrement and three dosas.  This unctuous enema provides strength to those wasted due to disease, physical exercise, evacuative measures and wayfaring, debilitated, devoid of ojas and having diminished semen.  Moreover, it gives good firmness to feet, shanks, thighs, back, shoulder and waist and virility to sterile women and men.”  One un-named formula is described as “for heart, bladder, head…used as urethral douche or non-unctuous enema in a person evacuated, uncted and fomented alleviates pain in bladder and other urinary disorders.” (5)

    Caraka’s last un-named unctuous preparation is described as an excellent aphrodisiac   “This is excellently beneficial for man enjoying women excessively having diminished semen, suffering from chest would, wasting and intermittent fever and for women having disorders of genital track, sterility, accumulation of menstrual blood, dead progeny and amenorrhea and for those having deficiency of muscle and blood.  It is excellent rasayana and destroyer of wrinkles and graying of hairs.” (5)

Modern Research
    While a lot of preliminary research has been done, science has just scratched the surface on the potential effects of Tinospora cordifolia in the human body.  Most research has been done in test tubes (in vitro) or in animals (in vivo) and has yielded some impressive results.  A large variety of chemical constituents have now been isolated from Tinospora cordifolia.  The major isolated compounds belong to a variety of classes such as alkaloids, diterpenoids lactones, glycosides, steroids, sesquiterpenoids, phenolics, aliphatic compounds, and polysaccharides.  The leaves have also been found to be abundant in protein and fairly high in calcium and phosphorous. (3, 4, 6, 8, 11, 13)

    The usefulness of Tinospora cordifolia as a cognitive enhancer has been substantiated by some research.  For example, healthy volunteers were given an aqueous extract for three weeks in a double blind study.  They were found to have a significant increase in test scores for logical memory and verbal memory.  A study gave aqueous and alcoholic extracts to normal and cyclosporine induced cognition deficient rats.  Tinospora cordifolia not only enhanced the cognition in normal rats but also in the rats treated with cyclosporine. (4, 14, 15)

Guduchi has been studied for its hypoglycemic actions.  Crude ethyl acetate, dichloromethane (CDM), chloroform and hexane stem extracts of Tinospora cordifolia was studied for inhibition of the alpha glucosidase enzyme.  The enzyme was inhibited by Tinospora and the hyperglycemic increase was decreased by 50% in normal animals and 58% in diabetic animals.  Another study used an aqueous extract of Tinospora cordifolia to test insulin resistance and oxidative stress in rats.  Tinospora cordifolia treatment prevented the increase in glucose by 21.3%, insulin by 51.5%, triglycerides by 54.12%, and glucose-insulin index by 59.8 of the rats fed fructose without the addition of Tinospora extract.  Also, Tinospora cordifolia treatment was effective in preventing the fructose-induced abnormalities in the liver involving lipid peroxidation, protein carbonyl groups, GSH levels, and enzymatic antioxidants.  (4, 21, 22)

    Tinospora supplies protection against gamma irradiation in mice.  Administration of an alcohol stem extract to mice 1 hour before whole body gamma irradiation was shown to increase survival, prevent body weight loss, increase the number of colony forming unit counts in the spleen, restore total lymphocyte counts, increase impaired S-phase cell population and decrease irradiation induced micronuclei.  In another study an aqueous extract was used on mice before being exposed to gamma radiation.  The results showed various amounts of protection against the radiation through increased survival time and signs and symptoms of radiation sickness. (4, 11, 16, 17)

    Looking into the immune system’s response to tumors one study showed the activation of tumor associated macrophages in Dalton’s lymphoma, a spontaneous transplantable T cell lymphoma, in response to an alcohol extract of Tinospora cordifolia.  Another study by the same authors again found an increase in the count of tumor associated macrophages. The researches also found an increase in the number and myeloid differentiation of bone marrow hematopoietic precursor cells in mice bearing Dalton’s lymphoma.  Further research on it’s anti-tumor activities used  a methanol extract found that it increased the white blood cell count, maturation of bone marrow stem cells, and increased immune response as seen in macrophage activation, and plaque-forming spleen cells.  The reduction in solid tumor growth was significant. (4, 18, 19, 20)

Guduchi has been one of the most versatile and important herbs in the Indian sub-continent since ancient times.  An enormous amount of knowledge has been accumulated by thousands of years of direct observation and trial and error.  In our modern era, impressive research has been done on the biological activity and possible application of Guduchi and its chemical constituents.  Guduchi may have been favorably used for thousands of years but modern herbal pharmacology appears to have just begun to appreciate “the one who protects the body”.

 

Works Cited
1.    Nadkarni K. M., Nadkarni A.K. (Eds) Indian Materia Medica (3rd ed) Vol. 1. Mumbai:Popular Prakashan Private Limited  pp. 356-365, 1220-1221
2.    Pandey G. (2002) Dravyaguna Vijnana (2nd ed) Vol. 1. Varuanasi: Krishnadas Academy pp. Vol. 1 pp.697-710
3.    Tinopsora.  http://www.drugs.com/npp/tinospora.html
4.    Krishna K., Jigar B., Jagruti P. (2009) Guduchi (Tinospora cordifolia): Biological and Medicinal properties, a review. The Internet Journal of Alternative Medicine Vol.6 Num.2 pp.1-10
5.    Caraka (2008) Caraka Samhita (Sharma P. Ed. and Trans.) Varanasi: Chaukhambha Orientalia Vol.1 pp. 9-11, 23, 71-73, 79, 85, 120, 121, 191, 266, 267, 316, 339, 427, 431, 449, 464, 477, 478, 496, 607, 610, 615, 616, 678. Vol. 2 pp.15, 21, 26, 28, 29
6.    Premila M.S. (2006) Ayurvedic Herbs: A clinical Guide to the Healing Plants of Traditional Indian Medicine. New York: Haworth Press  pp. 69-76, 175, 176
7.    Frawley D., Lad V. (2001) The Yoga of Herbs. Wisconsin: Lotus Press.  Pp. 242-243
8.    Williamson E. M. (Ed) (2002) Major Herbs of Ayurveda. London: Elsevier Science Limited  pp. 302-305
9.    Pole S. (2006) Ayurvedic Medicine: The Principles of Traditional Practice.  Philadelphia: Churchill Livingstone  pp.189-190
10.    Frawley D. (2000) Ayurvedic Healing. Wisconsin: Lotus Press pp.154, 158, 168, 266, 270, 282, 286
11.     Evaluation of a New Class 1 Substance, Tinospora cordifolia (Guduchi) (2006 September) IJEACCM 03 Item 3.2.4
12.      Ghishagratna K. K. (2003) Susruta Samhita (Dwivedi L. Ed.) Varanasi:Chowkhamba Sanskrit series Office.  pp.360
13.    Singh S. S., Pandey S.C., Srivastava S., Gupta V.S., Patro B., Ghosh A.C. (2003) Chemistry and Medicinal Properties of Tinospora Cordifolia (Guduchi). Indian Journal of Pharmacology .  pp.83-91
14.     Bairy K.L., Rao Y., Kumar K.B. (2004) Efficacy of Tinospora cordifolia on Learning and Memory in Healthy Volunteers: A Double-Blind, Randomized, Placebo Controlled Study. Iranian Journal of Pharmacology and Therapeutics. July Vol.3, No.2. pp.57-60
15.    Agarwal A., Malini S., Bairy K.L., Rao M.S. (2002) Effect of Tinospora cordifolia on Learning and Memory in Normal and Memory Deficit Rats. Indian Journal of Pharmacology. Pp.339-349
16.    Goel H.C., et al. (2004) Radioprotective Potential of an Herbal Extract of Tinospora cordifolia. Journal of Radiation Research. Vol.45 No.1. pp.61-68
17.    Pahadiya S., Sharma J. (2003) Alteration of lethal effects of gamma rays in Swill albino mice by Tinospora cordifolia. PubMed
18.    Singh S.M., Singh N., Shrivastava P. (2006) Effect of alcoholic extract of Ayurvedic herb Tinospora cordifolia on the Proliferation and Myeloid Differentiation of Bone Marrow Cells in a Tumor-bearing Host.  Fitoterapia. Vol.77 Issue 1. pp.1-11
19.    Singh N., Singh M.S., Shrivastava P. (2005) Immunomodulatory and Antitumor Actions of Medicinal Plant Tinospora cordifolia are Mediated Through Activation of Tumor-Associated Macrphages. Immunopharmacology and immunotoxicology, Vol. 26 pp.145-162
20.    Mathew S., Kuttan G. (1999) Immunomodulatory and antitumor activities of Tinospora cordifolia. Fitoterapia. Vol.70 Issue1 pp.35-43
21.    Chougale A.D., Ghadyale V.A., Panaskar S.N., Arvindekar A. U. (2009) Alpha glucosidase inhibition by stem extract of Tinospora cordifolia. Journal of Enzyme Inhibition and Medicinal Chemistry Vol. 24 PP.998-1001
22.    Reddy S.S., Ramatholisamma P., Karuna R., Saralakumari D. (2009) Preventive effect of Tinospora cordifolia against high-fructose diet-induced insulin resistance and oxidative stress in male Wistar rats. Food Chem Toxicology 47(9) pp.2224-2229

 

Turmeric: “The Golden Goddess” (by Lisa Gallant C.A.S)

Introduction

Within the cornucopia of medicinal plants, few possess such a wide spectrum of qualities and medicinal uses as turmeric. For countless centuries, many different cultures have used this wonderful, versatile herb to treat a myriad of diseases and ailments. The most well known medicinal action of turmeric is its use as a powerful anti-inflammatory, the effectiveness of which is comparable to pharmaceutical medicines. However, it also acts as an alterative, analgesic, antibacterial, anti-inflammatory, anti-tumor, anti-allergic, anti-oxidant, antiseptic, antispasmodic, astringent, carminative, cholagogue, digestive, diuretic, stimulant, and vulnerary 6,8,10 . Modern science is beginning to recognize and understand the amazing healing qualities of turmeric and much research is currently being conducted.

Turmeric has been proven effective in treating some of the most intense ailments afflicting the world today including: Arthritis, Cancer, Alzheimer's Disease, Diabetes, Multiple Sclerosis, Atherosclerosis, HIV/AIDS, Sexually Transmitted Diseases (Hepatitis-C, Genital Herpes) , Irritable Bowel Syndrome, Indigestion, Inflammation, Acne, Urinary Tract Infections, Kidney Infections, Gallstones, Anemia, Hemorrhoids, Liver Disease, Leprosy, Amenorrhea, Edema, Bronchitis, Common Cold, Headaches, Conjunctivitis, Bursitis, food poisoning, parasites, fever, diarrhea, poor circulation, lower back and abdominal pain. It can also be used as a mosquito repellent, wound healer, and immediate cure for scorpion stings. Turmeric helps balance the female reproductive and lactation systems, and in men it purifies and improves the health of semen. It is used to treat external ulcers that would not respond to other treatment 6,8,10 . Due to its vast array of medicinal purposes and versatility, turmeric is one of the most important herbs in any natural medicine cabinet.

The Latin name for turmeric is “Curcuma Longa”, which comes from the Arabic name for the plant, “Kurkum.” 10 It comes from the Zingiberaceae family (same as ginger) and in Sanskrit is called “Haridra”(“The Yellow One”), “Gauri” (“The One Whose Face is Light and Shining”),“Kanchani” (“Golden Goddess”) , and Aushadhi (“Herb”). It is called “Jiang Huang” in Chinese, and “Haldi” (“Yellow”) in Hindi, the most common name in India 6 . The healing properties of turmeric lie in the golden fingerlike stalk, or rhizome, the same part that is used to flavor, color, and preserve food. Turmeric is commonly found in Indian curries, giving the food a golden orange color. Turmeric has also been used as a dye for mustards, canned chicken broth, and pickles. It has been coded as food additive “E100” in canned beverages, baked products, dairy, ice cream, yogurts, yellow cakes, biscuits, popcorn, sweets, cake icing, cereal, sauces, gelatins, and also direct compression tablets. In combination with annatto, turmeric is used to color cheese, dry mixes, salad dressing, butter and margarine 3 . The brilliant color has also been used for dyeing silk and wool; the robes of Buddhist monks were traditionally dyed with turmeric 10 .

Turmeric is a native to South Asia , particularly India , but is cultivated in many warm regions of the world. It can be found growing extensively in all of India , but does especially well in the regions of Tamil Nadu, West Bengal , and Maharashtra 10 . It is also cultivated in Sri Lanka , Indonesia , China , Taiwan , Indochina , Peru , Haiti , and Jamacia. India is the largest producer in the world; Jamacia and Peru are the chief exporters, and Iran the largest importer. Other large importers are the United Kingdom , Japan , Canada , Sri Lanka , Singapore , and the Middle East 9 .

There are two main varieties of turmeric: one with hard, rich colored, oval rhizomes, called “Lokahandi Halad” that is used mostly for dying, and a variety that is softer, larger, lighter colored with long rhizomes used mostly for eating 8 . Turmeric became valuable to humans when it was discovered that the powdered rhizome preserved the freshness and nutritive value of foods. It was originally used in curries and other food to improve storage conditions, palatability, and preservation. Because of its preservation properties, turmeric played a vital role in survival and sustainability in South Asia , and was valued more than gold and precious stones 7 . However, turmeric was eventually replaced by cheaper, synthetic preservatives.

Turmeric was used much more extensively by the natives of India than today. Turmeric was highly valued by the ancient Indo-European people not only for its preservation properties, but for its energetic and spiritual qualities as well. The Arya culture was a group of people who worshipped the solar system and the sun as a deity. Turmeric was very sacred to them, due to its golden yellow color (like sunlight) and they believed it had special protective properties 7 . Remnants of this belief still exist today, particularly in South India , where some people wear a dried turmeric rhizome bead the size of a large grape around their neck or arm. This is an ancient talisman tradition used to ward off evil and grant to the wearer healing and protection 16 . People of ancient India believed that turmeric contained the energy of the Divine Mother, helped to grant prosperity, cleanse the chakras (energy centers in the body), and purify the channels of the subtle body 6 . Even today, Hindu people consider turmeric to have auspicious qualities, and use it in many sacred ceremonies. It is commonly made into a paste and applied to the forehead (ajna chakra or third eye) during pujas (devotional ceremonies) and weddings. During a traditional Indian wedding ceremony, the bridge and groom apply a paste of turmeric and sandalwood powder on each other's foreheads. Some women use it as a cosmetic, called “Kappumanjal” or rub it over their bodies as a detergent 8 . Traditionally, turmeric was also used to dye the marriage clothing. It was believed that any clothing dyed with turmeric was protection from fever. New clothes would sometimes be stained with a paste of turmeric, lime, and water. Today, magenta dye has become more popular 9 .

Turmeric and Ayurveda

Turmeric has been used for centuries in Ayurveda, the 5,000 year old natural healing system of India . It is called by 46 different synonyms, including: “pitta” (yellow), “gauri” (brilliant), and all words that indicate “night” 10 . This comes from a tradition of married women applying turmeric to their cheeks in the evening in preparation for a visit from Lakshmi (The Goddess of Prosperity) 7 . In Ayurveda, turmeric is believed to balance the three doshas (vata, pitta, and kapha). It has been used by Ayurvedic healers as medicine taken internally in the form of fresh juice, boiled tea, tinctures, or powder, and topically as creams, lotions, pastes, and ointments 1 . There are many ancient Ayurvedic formulas utilizing turmeric. Milk boiled with turmeric and sugar was a popular cold remedy and turmeric juice was used to help heal wounds, bruises, and leech bites. A paste made from turmeric, lime, and salt was commonly applied to sprains and inflamed joints 8 . Smoke made by sprinkling turmeric over burnt charcoal was used to relieve scorpion stings within a few minutes that the affected area is exposed to smoke. Inhaling the fumes of burning turmeric was also used commonly to release copious amounts of mucous and provide instant relief from congestion. The fumes also were believed to help in hysteric fits 8 . A pinch of turmeric was also used as an insect repellent in the kitchen 9 . A paste made of turmeric alone or with neem leaves was used for ringworm, itching, eczema, and any other parasitic skin condition 8 . The Charakra Samhita section on Therapeutics states that turmeric, black pepper, long pepper, and ox bile was a common remedy for consumed poison or snake bites, up until the last stage 15 . The Charakra Samhita also provides a traditional remedy for jaundice: turmeric, triphala, neem bark, bala, licorice cooked in milk and ghee of buffalo. If this did not work and there is “found residue of morbidity still lodged in the body”, inhalation therapy was indicated. Cigars were made from turmeric paste, cinnamon, castor plant root, lac, red arsenic, deodar, yellow orpiment, and nardus, smeared with ghee and smoked. Inhalation of the fumes of barley paste with ghee was also a treatment for jaundice 15 . Hemorrhoids (piles) were treated with an ointment of turmeric, hemp leaves, onions, and warm mustard oil or linseed oil, applied externally when the hemorrhoids are painful and protruding 8 . Pastes of turmeric were used for smallpox, chickenpox, shingles, ulcers, conjunctivitis, skin blemishes, malaria, and applied to the cut placenta after the birth of a child 8 .

Turmeric has hundreds of molecular constituents, each with a variety of biological activities. There are at least 20 molecules that are anti-biotic, 14 that are known cancer preventatives, 12 that are anti-tumor, 12 are anti-inflammatory and there are at least 10 different anti-oxidants 7 . One database presented over 326 known biological activities of turmeric 12 . The rhizome is 70% carbohydrates, 7% protein, 4% minerals, and at least 4% essential oils. It also has vitamins, other alkaloids, and is about 1% resin 7 . The active ingredient in turmeric is called “curcumin”, although in its raw state turmeric only contains 2-5% curcumin 4 . Curcumin is the substance that is responsible for the biological activity of turmeric. Combined with black pepper, curcumin becomes 2000 times more potent 4 . Curcumin is now extracted from turmeric, sold as supplements, and is the basis of most scientific research.

The active properties of curcumin are best called “protective properties”. The same components that prevent deterioration of food protect living tissue from degenerating, possibly extending the life span of our bodies 7 . Clinical and laboratory research indicates that diets that include turmeric or curcumin “stabilize and protect biomolecules in the body at the molecular level”, which is shown in its anti-oxidant, anti- mutagenic, and anti-carcinogenic action 7 . These components may work by protecting a person directly, by shielding the biomolecules, or indirectly, by stimulating the natural detoxification and defense mechanisms of the body: helping the body to heal and preserve itself naturally 7 . Current statistics show that 98% of all diseases are controlled by a molecule called NF-Kappa B, a powerful protein that promotes abnormal inflammatory response in the body. Excess of NF-Kappa B can lead to Cancer, Arthritis, and a wide range of other diseases. Studies show that curcumin subdues NF-Kappa B, meaning that it may work to prevent nearly all diseases afflicting our world today 4 .

Science and Turmeric

Scientists are beginning to realize the importance of turmeric/curcumin in treating modern disease. Much research has been conducted on the various effects of curcumin in the body; the most widely researched is that of its effects on Cancer. In both India and Pakistan , where curry/turmeric is a dietary staple, boast much lower incidence of cancer than in other countries where turmeric is not regularly consumed 2 . Turmeric is considered to fight Cancer in three ways: It neutralizes those substances and conditions which can cause cancer; It directly helps a cell retain its integrity if threatened by carcinogens (a substance showing significant evidence of causing cancer or growth of cancer cells); If a tumor does grow the curcumins can often destroy it 13 . There are many reasons why turmeric helps to destroy Cancer. One of the keys to this activity is the ability of curcumin to inhibit the enzyme Topoisomerase, which is required for the replication of cancer cells. “Topoisomerase works within the nucleus of the cell, where it first binds to supercoiled DNA and then catalyzes the passage of one DNA helix through another via a transient double-stranded break. This splits the DNA and thus allows cell replication to occur. Stopping Topoisomerase stops replication which stops the spread of the problem 13 .”

Curcumin is also one of the most studied natural COX-2 inhibitors, which block an enzyme called cyclooxygenase-2. This is beneficial because the COX-2 enzyme helps make carcinogens more active in the body and allows cancerous cells to survive by growing new blood vessels 2 . In essence, curcumin completely blocks the formation of cancer causing enzymes, decreasing the likelihood of cancerous cell formation or growth. Curcumin is also rich in antioxidants, which are important disease fighting substances that help to clean up unstable oxygen molecules (free radicals) that can damage cells and cause diseases such as Cancer. Other antioxidants and COX-2 inhibitors are red grapes, green tea, rosemary, and bee propolis 2 .

Even when using more allopathic methods to treat cancer, turmeric/curcumin still helps to increase the effectiveness and decrease some of the side effects of cancer treatments. Current research suggests that including curcumin in the diet during the “initiation and or post initiation periods” of cancer significantly suppresses the development of chemically induced tumors 13 . In summary, research is showing that curcumin may be more effective treatment for cancer in the beginning phases of the disease, as well as preventative treatment throughout life before cancer even emerges. A study performed in 1992 on 16 cigarette smokers who took 1.5 g of turmeric a day for 30 days had much lower mutagenic levels in their urine than those who did not include turmeric in their diet 1 . Mutagens are substances that cause cell mutation and increase the occurrence of cancer. There is, however, some new research suggesting that taking curcumin may counteract the effectiveness of chemotherapy. Thus, many cancer treatment programs are developing a periodic schedule of use to avoid any issues 13 .

“We have not found a single cancer on which curcumin does not work”, states Dr. Bharat Aggarwal, who conducts cancer research at the Jawaharlal Nehru Centre for Advanced Scientific Research in Bangalore , India 4 . Ayurveda especially recommends turmeric for cancers of the female reproductive system, specifically breast and uterine cancer, and to treat benign tumors as well 11 . Although the current research looks promising, there have been very few long term tests performed on large quantities of humans. Turmeric was recently nominated by the National Cancer Institute for more study so we can look forward to many more research findings in the future.

Turmeric is also a powerful anti-inflammatory herb. It has been shown to be helpful in the treatment of Arthritis, Rheumatoid Arthritis, Osteoarthritis, injuries, trauma, and stiffness from both under activity and over activity 10 . It is also helpful after surgery to decrease pain, inflammation and accelerate healing. One study conducted in 1986 showed that a dosage of 1200 mg of curcumin a day was more effective in reducing post-surgical inflammation than either the placebo group or anti-inflammatory medication normally prescribed 5 . In India , turmeric is considered the standard anti-inflammatory, and yogis use it to help keep their tendons and ligaments free from injury and to assist in their asana practice 6 . In the same way, it minimizes pain and inflammation related to any kind of exercise or strenuous activity. Majeed states: “Perhaps Turmeric's most important anti-inflammatory mechanism centers on its effects on the Prostaglandins (PGs), a large family of potent lipids produced by the body. PG1 and PG3 calm the body while PG2 inflames the body. Turmeric is a potent inhibitor of cyclooxygenase 5-lipoxygenase and also 5-HETE production in neutrophils. Reducing these enzymes means less arachidonic acid metabolism, which means less PG2, which means less pain and inflammation 7 .” Some sources suggest that turmeric/curcumin is most effective for acute inflammation, and not for chronic 1 . Many sources recommend turmeric for Arthritis but the scientific evidence is still unclear and much more research is underway.

Turmeric also has a special action to purify and nourish the blood and skin. External application stops pain and swelling, heals wounds rapidly, and treats many skin diseases ranging from acne to leprosy. The classic way to apply turmeric topically is as an “Ubtan”: a blend of turmeric, chick-pea flour, sesame or almond oil, a little fresh cream and honey. This will clear up skin blemishes, and increase the natural glow and radiance of the skin 16 . Turmeric essential oil works wonderfully as an external antibiotic to prevent infections in wounds. A nice formula for a wound healing salve is a mixture of olive oil, beeswax, tea tree oil, aloe, turmeric, arnica, slippery elm, red clover, thyme oil, and vitamin E 9 . Since turmeric is bitter and anti-inflammatory, it is excellent for hot skin diseases, red rashes, and especially wet eczema 16 . Turmeric essential oil, mixed with citronella, tulsi, and vanillin, works as a powerful insect repellent, and is a natural alternative to D.E.E.T, the most common chemical insect repellent commercially available. Studies show that D.E.E.T. is extremely toxic, hazardous to the environment, and actually kills plant and insect life that it contacts 3 .

Turmeric also protects the liver from toxins and pathogens. It is known to both destroy m toxins in the liver, and to rebuild the liver after a toxic attack 16 . Turmeric increases the secretion and movement of bile, and may prevent all forms of liver disease. Excessive use of drugs and/or alcohol can tax the liver and lead to liver diseases 16 . One study shows that curcumin blocks some of the harmful side effects of cigarette smoke, and prevents dangerous chemical formation after eating processed food 11 . It is also helpful in treating food poisoning. Traditionally, about 5 grams of Turmeric is taken with a glass of whey, morning and evening, for a month to activate and rebuild a liver 8 . Another good liver remedy could be based on Turmeric, Kutki root, and Milk Thistle seeds. In essence, turmeric helps keep the liver healthy so it can do its job of keeping the body detoxified.

Ayurveda uses turmeric to purify and move the blood, as it is a wonderful alterative. It helps to remove stagnant blood while stimulating the formation of new blood tissue 6 . Turmeric regulates menses, and decreases the intensity and pain of menstrual periods, and of uterine tumors. Turmeric is a mild and supportive uterine stimulant and its many actions on the liver suggest that it may assist in balancing hormone levels as well 16 .

Turmeric also plays a role in pregnancy and birthing in India . Traditionally, it is said that taking turmeric when pregnant will ensure that the child will always have beautiful skin 16 . (However, turmeric is a mild uterine stimulant, so there is a chance of over stimulation; it is essential to consult a healthcare practitioner before taking any herbs during pregnancy.) Turmeric taken in the last two weeks of pregnancy in warm, organic milk helps to expedite a simple birth, while increasing the health of the mother and child as well. Turmeric is also an analgesic (pain reliever) and is sometimes used in natural childbirth to decrease pain 16 .

Turmeric also has a special action to help the entire Gastro-Intestinal system by increasing intestinal flora and generate healthy digestion 6 . It is traditionally used for weak stomachs, poor digestion, dyspepsia, parasites, abdominal cramps, to normalize metabolism, to help digest protein and breakdown of fats, to increase absorption, and the ability of the stomach to withstand digestive acids 6 . Turmeric is also a carminative: it helps to decrease gas and distention. According to Ayurveda, plants that treat digestion are often the most important herbs of all since digestion is the basis of mental and physical health. Prashanti de Jager states, “Turmeric is one of the best carminatives because though it leans towards being heating-pungent, it is very balanced and does not aggravate any of the doshas if taken in normal amounts, a few grams per day 16 .” As a vulnerary it also helps to nurture and heal mucous membranes; it has a strong protective effect against food and materials that are corrosive to the stomach and intestines as from food poisoning. In a 1989 double blind study (the participants and researches did not know which groups were taking the herb or the placebo) conducted in Thailand , 500mg capsules of curcumin were given to 116 adults suffering from indigestion at six different hospitals. Stunning results showed that 90% of those taking the curcumin felt full or partial relief after seven days, while 53% of the placebo group felt relief 1 .

Another major use of turmeric is support of the respiratory system. As an anti-oxidant it protects the lungs from pollution and toxins. It also helps the oxygen transfer from the lungs to the blood. Turmeric with ghee is traditionally used to get rid of cough and to treat asthma 8 . It also supports the heart in many ways. A study conducted in 1992 shows that turmeric may assist in lowering cholesterol and prevent Atherosclerosis (blockage of arteries that can cause heart attack and/or stroke) 12 . Animal studies have shown that turmeric lowers cholesterol levels and inhibits the oxidation of LDL (“bad cholesterol”, responsible for clogging of arteries). When LDL becomes oxidized, it creates deposits in the walls of blood vessels and contributes to the formation of arteriosclerosis. Turmeric may also prevent platelet buildup along the walls of injured blood vessels, another common cause of blood clots and artery blockage that can result in heart attacks and strokes 12 .

Studies are also underway regarding turmeric's believed effects in treating and preventing neurological diseases such as Multiple Sclerosis and Alzheimer's Disease. This belief generates from the realization that elderly Indian people who eat turmeric on a regular basis are far less likely to develop these ailments than those who do not eat turmeric. In fact, Alzheimer's Disease is 4.4 times less common among older adults in India than in the United States 4 . It has been noted that people taking anti-inflammatory medication for Arthritis are less likely to develop Alzheimer's Disease 1 . Since turmeric possesses such a powerful anti-inflammatory action, scientists speculate that it most likely will have a preventative effect on such disorders. More research is needed in this area to prove such theories.

New research also suggests that turmeric may play a vital role in fighting HIV/AIDS, particularly HIV, Type 1 10 . In a recent study at the Jawaharlal Nehru Centre for Advanced Scientific Research in Bangalore , India , when scientists 'fed' curcumin to HIV-infected cells in the laboratory, the virus stopped replicating 17 . Several studies have shown that people who have HIV and AIDS are deficient in many antioxidant vitamins and minerals, and it is believed that it is the powerful antioxidant properties of turmeric that combat the disease 17 . "Curcumin's antioxidant properties will protect your DNA from the ravages of the virus. It's also antimicrobial, so it will help prevent the many opportunistic illnesses associated with HIV and AIDS," says Dr. Susan Kowalsky, N.D., a naturopathic doctor in Norwich , Vermont 18 . In a study at Harvard Medical School , research showed that curcumin prevented the reproduction of HIV by blocking a specific gene that activates the virus and causes it to spread. Another study showed that it may help decrease the reproduction of HIV 18 . This is a currently major topic of research, so we can look forward to updates in the near future.

Turmeric can obviously stand the test of time. It has been worshipped, reveled and revered by people for centuries, and still today it is one of the most significant players in the prevention of serious disease as well as the general afflictions of living. Much more research is underway to prove scientifically what the ancient people of India have known for centuries: that turmeric is one of the most powerful plants on the planet. Whether suffering from an acute or chronic disease, aches and pains, bumps and bruises, or as preventative maintenance, turmeric can and should be utilized by everyone on a regular basis. In the words of David Frawley: “If I had only a single herb to depend upon for all possible health and dietary needs, I would without much hesitation choose the Indian spice turmeric 16 .” Without a doubt, this writer feels exactly the same.

References

1. Whole Health MD.com , Article: “Turmeric”.

http://www.wholehealthmd.com/refshelf/substances_view/1,1525,10062,00.html

2. Whole Health MD.com , Article: “Cancer Fighters in Your Spice Rack,” 3/21/2001 .

http://www.wholehealthmd.com/news/viewarticle/1,1513,844,00.html

3. The Wikipedia Encyclopeida

http://en.wikipedia.org/wiki/Turmeric

4. Sundaram, Viji. Article: “Don't Go Easy on Turmeric: It Prevents and Cures Cancer”: India-West , 2005

5. HealthNotes , Article: “Turmeric”, 2002.

http://www.drugstore.com/templates/hnotes/default.asp?catid=41779&aid=33...

6. Frawley, David & Vasant Lad, The Yoga of Herbs . Lotus Light Publications, 1993.

7. Majeed, Muhammed; Vladimir Badmaev; Uma Shivakumar; R.Rajendran, eds., Curcuminoids ; antioxidant phytonutrients. NutriScience Publishers, Inc, 1995.

8. Nadkarni, K.M., The Indian Materia Medica. Bombay Popular Prakashan, 1976.

9. Kaushik, Purshotam, Haridra (Turmeric): Antibacterial Potential . Chowkhamba Sanskrit Series Office, Varanasi , 2003.

10. Williamson, Elizabeth , ed., Major Herbs of Ayurveda. Churchill Livingstone, 2002.

11. Pook, Sally, “ Curries May Help to Combat Cancer”. Article: news.telegraph.co.uk

12. University of Maryland Medical Center , Article: “Turmeric”.

http://www.umm.edu/altmed/ConsHerbs/Turmericch.html
13. Cancer Research , Article: “Chemopreventive Effect of Curcumin , a Naturally Occurring Anti-Inflammatory Agent, during the Promotion/Progression Stages of Colon Cancer ” Cancer Research 59, 597-601, February 1, 1999 .

14. Cole GM , Lim GP , Yang F , Teter B , Begum A , Ma Q , Harris-White ME , Frautschy SA . “Prevention of Alzheimer's disease: Omega-3 fatty acid and phenolic anti-oxidant interventions.” Neurobiol Aging. October 30, 2005 .

15. Dash, Bhagwan and R.K. Sharma, Caraka Samhita . Chowkhamba Sanskrit Series Office, Varanasi ,India , 2001.

16. Prashanti de Jager, Article: “Turmeric: The Ayurvedic Spice of Life”, 2003.
17. SciDev.net , Article: “Turmeric can Combat malaria, Cancer Virus, and HIV”. March 6, 2006 .

http://www.scidev.net/news/index.cfm?fuseaction=printarticle&itemid=1987...

18. Mother Nature.com, Article: “HIV and AIDS”. http://www.mothernature.com/Library/Bookshelf/Books/23/102.cfm

19. Pub-Med, Article: “In Vitro and in Vivo Anti-Tumoral Effect of Curcumin Against Melanoma Cells.” http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dop...

Better Known as Turmeric By: Ivy Cannon

Introduction

Over thousands of years, turmeric has served many purposes. This versatile root's bright yellow color has always been used for paints and dyes. Far superior to its use for color are its many culinary applications and medicinal purposes. Because of its widespread use, this wonderful root has nearly as many names as uses.
 
Numerous are the names given to this amazing root but it is most commonly known as Turmeric (Curcuma longa). "Curcuma is Latinization of Arabic al-kurkum [rfi..SJI], which originally means saffron but is now used for turmeric only." [1] Turmeric is sometimes called indian saffron, golden goddess, haridra, haldi, jiang huang, curcuma longa, kha min chan by the Thai, kunir in Indonesia, kurkuma by the Germans and Terre-merite in France. In almost every language it means "yellow root." In India alone it has over 10 different names: halad, haradi, nisa, kancani, pasupu, makhal, halud, ladir, pivari and yositpriya.
 
Haradi is a plant native to southern India and Asia, and it is closely related to ginger. 'Turmeric (Curcuma longa) is a rhizomatous herbaceous perennial plant of the ginger family, Zingiberaceae." [2] "A tall herb, rootstock large, avoid, with sessile cylindric tubers orange-colored inside. Leaves very large, in tufts up to 1.2 meters long, including the petiole which is as long as the blade, oblong-lanceolate, tapering to the base. Flowering in autumn, spikes 10-15 cm long; peduncle 15 cm or more, concealed by the sheathing petiole; flowering bracts pale green; bracts of coma tinged with pink." [3] The root looks much like ginger with a more orange skin that is thinner. The inside of risa is a yellowish-orange color. Another variation is known as kunkum. Kunkum is red on the inside and considered sacred thus not used for cooking. Only the yellow haridra is eaten, and it is essential in most Indian cooking. Aside from being such a great herb for cooking, nisa is one of the most important herbs for both internal and external medicinal use.
 
Understanding the chemical components of ladir is necessary when learning how to use the root effectively. A closer look at curcumin through the lense of science reveals it's healing essence. "Turmeric contains up to 5% essential oils and up to 5% curcumin, a polyphenol." [5] "An active principle curcumin, yellow coloring matter and turmeric oil (or turmeriol) of specific odor and taste, and yellow color." [6] "Curcumin is the active substance of turmeric and curcumin is known as C.I. 75300, or Natural Yellow 3. The systematic chemical name is
(1E,6E)-1,7-bis(4-hydroxy-3-methoxyphenyl)-1,6-heptadiene-3,5-dione." [5] "Fresh rhizomes yield 0.24% oil, containing zingiberene." [6] The plant kingdom classification of turmeric shows its close relation to ginger.
  • o Kingdom: Plantae - Plants
  • o Subkingdom: Tracheobionta - Vascular plants o Superdivision: Spermatophyta - Seed plants
  • o Division: Magnoliophyta - Flowering plants o Class: Liliopsida - Monocotyledons,
  • o Subclass: Zingiberidae o Order: Zingiberales
  • o Family: Zingiberaceae - Ginger family o Genus: Curcuma L. - curcuma
  • o Species: Curcuma longa L. - common turmeric [4]

Traditional Uses

Traditionally the active principle curcumin, which gives turmeric its bright yellow
color, was used as a fabric dye. It's use in this application has varying results and ultimately the color it produces fades fast. "Essentially turmeric makes a poor fabric dye, as it is not very light fast. However, turmeric is commonly used in Indian and Bangladeshi clothing, such as saris and Buddhist monks' robes." [7] Even though we now have superior synthetic dyes this root is still used by many cultures as a coloring agent.
 
We may be able to easily replace kunir with a synthetic dye, but we can not employ a different herb to replace it's numerous culinary and medicinal applications. Probably best known for its classic application as a fundamental spice in the curry armamentarium, turmeric is a significant ingredient in most commercial curry powders. Its bright gold color gives curries their characteristic hue and adds an attractive tone, especially to vegetable combinations. Jiang Huang is mostly used in savory dishes, as well as some sweet dishes such as the cake sfouf. "Although most usage of turmeric is in the form of rhizome powder, in some regions leaves of turmeric are used to wrap and cook food. In Goa and Dakshina Kannada (Karnataka state, India), turmeric plant leaf is used to prepare special sweet dishes, patoleo, by layering rice flour and coconut-jaggery mixture on the leaf, and then closing and steaming it in a special copper steamer (goa)." [8] Indian saffron is used in so many indian culinary delicacies it's a shame one can't list them all. Some applications include dishes such as dal soup, kitchadi, bhaji, subji, rice khir, raitas, chutneys and pickling. In a more modern culinary application, "Turmeric (coded as E100 when used as a food additive, indicating how it is used as a food coloring since it normally gives food slightly yellow color) is used to protect food products from sunlight."[9] This commonly found food additive has also been proven beneficial to your health.
 
For many thousands of years kunir has been used in a laundry list of applications with effects on all the tissues of body and several body systems. "Turmeric is the best medicine in Ayurveda. It cures the whole person. Turmeric's rasa (taste) is pungent, bitter, astringent, the virya (effect on digestion) is heating with a pungent vipaka (post digestive effect). Turmeric can be used by all doshas (body types). Turmeric helps digestion, maintains the flora of the intestine, reduces gas, has tonic properties and is an antibiotic. Turmeric can be used for cough, sty, diabetes, hemorrhoids, cuts, wounds, burns and skin problems. It helps reduce anxiety and stress." [10] Its herbal actions include a digestive stimulant, carminative (dispel gas), alterative (cleanses circulatory system), vulnerary (heals the skin), hemostat (stops bleeding), antibacterial, purification of tissue while supporting tonification (increase tissue) and emmenagogues (action on female reproductive system). "Its use is indicated when indigestion, poor circulation, cough, amenorrhea, pharyngitis, skin disorders, diabetes, arthritis, anemia, wounds, or bruises are present." [11] Over the centuries it has been used for the treatment of snake bites and scorpion stings. Even now when western medicine is unavailable to those living in more isolated areas, halad is an effective treatment. "The smoke produced by sprinkling powder of turmeric rhizome over burning charcoal will relieve scorpion sting when the part affected is exposed to the smoke for a few minutes." [12] More uses for this wonderful herb include:
  • for anemia, take a bowl of yogurt with 1 tsp turmeric. Eat on empty stomach morning and evening. Do not eat after dark.
  • for cuts, wound and fungal nail infections, apply mixture of Yz tsp turmeric & 1 tsp aloe vera gel to affected area.
  • for external hemorrhoids, apply a mixture of Yz tsp of turmeric and 1 tsp of ghee locally at bedtime. [10]

Effects on Body Tissues

From an Ayurvedic perspective, we can look at each tissue of the body and see how turmeric plays a role in the health of that tissue (dhatu). Here are a few ways haridra works on each tissue of the body, although it is not limited to these actions. In the lymphatic system, known as the rasa dhatu, turmeric purifies the lymphatic fluid, removes stagnation, reduces excess heat associated with low intermittent fever and reduces inflammation of mucous membranes.
 
In the circulatory system, the rakta (blood) benefits greatly from turmerics effects. Some of these include: stimulation of blood tissue development, regulation of blood glucose levels, removal of stagnation in the liver, antimicrobial properties that fight bacterial and viral infections as well as inflammatory conditions and a hemostatic property which acts as a coagulant. It's effectiveness as a hemostat makes it useful for mild internal bleeding due to diseases such as ulcerative colitis. The leaves of kunir also have an antipyretic (cools blood & liver) effect.
 
In the mamsa dhatu or muscle tissue, one may notice benefits for complexion. A paste made of flour and halad is used for treatment of ringworm or other parasitic skin conditions. For a heated skin condition such as herpes simplex virus, one could apply ladir in aloe vera gel to the affected area. The same mixture of turmeric and aloe vera gel taken internally, is used to combat the systemic heat and viral infection associated with a herpes flare up. A haridra and salt paste may be applied to bruises or traumatic injuries where swelling has occurred to not only reduce the swelling, but alleviate some of the pain as well. Nisa may also be used for acne in conjunction with sandalwood.
 
Fat tissue, also known as the medas dhatu, is affected in many ways by jiang huang. Through its purification and clearing stagnation in the liver, it increases function of gallbladder and bile production. This stimulates digestion of fats while also having the ability to aid in the digestion of protein through assisting the pancreas in its digestive functions. All of these factors lead to the maintenance of a healthy body weight.
 
Turmeric stimulates flow through the circulatory system by promoting removal of old red blood cells and production of new red blood cells. The asthi dhatu, or bones, are the site of production for new red blood cells. Golden Goddess has an alkalizing effect on the blood which promotes healthy bones. When the blood ph is low and the body is highly acidic, the blood borrows minerals such as calcium from the bones to bring its ph to a more alkalized environment. This borrowing from the bones leads to a weakening. Over time this can lead to the disease osteoporosis. Through its antimicrobial properties and stimulation of healthy red blood cells, risa can prevent infections of the bones such as osteomyelitis.
 
Indian Saffron is known as a protector against stress and anxiety. It purifies the plasma which is the vital spinal fluid that feeds the brain. With healthy pure rasa (lymph) feeding brain function the entire nervous system is supported. In a recent study on alzheimer's disease haldi was proven to be therapeutically beneficial. "Alzheimer's disease (AD) is a neurodegenerative disorder and the most common form of dementia, affecting more than 5.4 million people in the USA. Some natural products may be used as AD therapeutics from a variety of biological sources, including the anti-amyloid agent curcumin, isolated from turmeric." [21]
 
While pivari has a purifying effect, lets not forget its support in tonification (building) of tissue. Mostly associated with use for the female reproductive system it is used as a general tonic and stimulant. Safe for use during later trimesters of pregnancy, its stimulating effect can promote menstruation and thus should be avoided during early conception. While its tonifying and purifying effects maintain healthy reproductive tissue, it's antimicrobial properties make it useful in the treatment of sexually transmitted diseases such as gonorrhea.
 

Effects on Body Systems

There are specific body systems that the golden goddess has more of an effect on than others. One of these is the circulatory system. "The rhizome is used as a stimulant; and is externally applied to bruises, cuts, ulcers, sprains and pain. It is orally given in blood diseases. Employed in intermittent fevers. Its used externally on bruises and snake bites." [13] In the event of a sprain or pain one can employ various applications of turmeric rhizome. "For general muscle strain, apply warm ginger paste with turmeric (one tsp ginger with Yz tsp turmeric) to the affected area twice a day. Wrap the affected area in a piece of gauze or cotton cloth. A warm compress may be applied for further relief of pain." [14] Healing time for this kind of injury can be increased by daily internal use. "A good antibacterial for those chronically weak or ill. It not only purifies the blood, but also warms it and stimulates formation of new blood tissue. Golden Goddess gives the energy of the Divine Mother and grants prosperity. It is effective for cleansing and purifying the channels of the subtle body." [11] Long term use of ladir has been proven to be an essential part of preventative and holistic medicine.
 
In the digestive system indian saffron is best known for its treatment of inflammation and indigestion with flatus. Although this herb is warm and stimulating, it does not create heat in the liver and actually moves stagnant heat out of the liver and small intestine. For this reason it is sometimes given during bouts of diarrhea. Kunir may be added to high protein food to assist digestion and prevent the formation of gas. It is effectively used to maintain the flora of the large intestine and prevent the formation of toxins. Best taken in a portion of 1-3 grams of powder with food. In one western study scientist looked at the effects of turmeric as an anti-inflammatory in the colons of mice. "The biological activity of Curcuma extract was evaluated against Carbachol induced contraction in isolated mice intestine." [19] Alternating administration of either curcuma longa or a placebo, observations were held for a period of two weeks. In conclusion the study demonstrated, "Curcuma extract has a direct and indirect myorelaxant effect on mouse ileum and colon, independent of the anti-inflammatory effect. The indirect effect is reversible and non-competitive with the cholinergic agent. These results suggest the use of curcuma extract as a spasmolytic agent." [19] Ultimately this study confirms the anti-inflammatory and bowel tonic effect nisa has on the digestive system.
 
Golden Goddess is said to assist in the digestion of proteins which in turn assists the pancreas in its activities. These effects are not limited to the pancreas' exocrine functions. For reasons that are still being studied turmeric helps support blood glucose levels. "Health benefits of curcuminoids from C. longa as antioxidants, anti-cancer and anti-inflammatory molecules have been well documented. We report here for the first time that Bisdemethoxycurcumin (BDMC) from C. longa, acts as an inhibitor to inactivate human pancreatic a-amylase, a therapeutic target for oral hypoglycemic agents in type-2 diabetes." [20] "For the treatment of diabetes, turmeric is also useful. Take four to five 00 capsules after each meal to return the blood sugar levels to normal." [15] Certainly halads
promotion of a healthy liver aids in the storage of glycogen and regulation of glucose. This storage and regulation allows the pancreas to function optimally.
 
In the respiratory system haridra is good for fighting infections such as bronchitis. A common treatment for a cold is; "Fresh juice (10-20 gms) of turmeric or drink 1 cup milk boiled for 3 minutes with 1 tsp turmeric before bed." [16] To combat cough, sore throat and relieve inflammation in the throat, prepare a turmeric and salt gargle (2 pinch : 2 pinch) in one cup hot water. A "milk turmeric decoction is said to be beneficial for cold, diarrhea, intermittent fever, dropsy, jaundice, liver disorders, urinary diseases, worms (add sugar follow with purgation & enema), trauma and fracture." [17] For sinus inflammation add a pinch of risa to your neti pot or make a medicated oil. The kunir oil may be added to a neti pot or a few drops inserted directly into each nostril.
 

Western Studies

There have been many studies held on the effects of jiang huang as an anti-inflammatory for the bowels, an antimicrobial for the blood and a blood sugar regulator. More recent studies are showing the effects of halad on cancer cells. One thing we know from collective research is that it reduces heat in the liver by balancing or alkalizing the blood ph. In many cases cancer patients have a low ph. Here are two studies that support the theory of turmeric's benefits for cancer patients.
  • Study 1 "Animal and laboratory studies have found that curcumin, an antioxidant that is an active ingredient in turmeric, demonstrated some anticancer effects.  Antioxidants are compounds that can protect the body's cells from damage caused by activated oxygen molecules known as free radicals. However, clinical research is needed to determine curcumin's role in cancer prevention and treatment in humans. Several types of cancer cells are inhibited by curcumin in the laboratory, and curcumin slows the spread of some cancers in some animal studies." [22]
  •  
  • Study 2 "Curcumin (diferuloylmethane), the yellow pigment in Indian saffron (Curcuma longa; also called turmeric, haldi, or haridara in the East and curry powder in the West), has been consumed by people for centuries as a dietary component and for a variety of proinflammatory ailments. Extensive research within the last decade in cell culture and in rodents has revealed that curcumin can sensitize tumors to different chemotherapeutic agents. Chemosensitization has been observed in cancers of the breast, colon, pancreas, gastric, liver, blood, lung, prostate, bladder, cervix, ovary, head and neck, and brain and in multiple myeloma, leukemia, and lymphoma. Similar studies have also revealed that this agent can sensitize a variety of tumors to gamma radiation including glioma, neuroblastoma, cervical carcinoma, epidermal carcinoma, prostate cancer, and colon cancer. Although it acts as a chemosensitizer and radiosensitizer for tumors in some cases, curcumin has also been shown to protect normal organs such as liver, kidney, oral mucosa, and heart from chemotherapy and radiotherapy-induced toxicity. These preclinical studies are expected to lead to clinical trials to prove the potential of this age-old golden spice for treating cancer patients." [23]
 
While there are many theories to support kunir's versatile uses, some studies suggest otherwise. "Curcumin (CUR) is the major orange pigment of turmeric and believed to exert beneficial health effects in the gastrointestinal tract and numerous other organs after oral intake. However, an increasing number of animal and clinical studies show that the concentrations of CUR in blood plasma, urine, and peripheral tissues, if at all detectable, are extremely low even after large doses. In view of the very low intestinal bioavailability, it is difficult to attribute the putative effects observed in peripheral organs to CUR. Without testing the fecal matter for concentrations of CUR it can't be said that turmeric has, poor permeation from the intestinal lumen to the portal blood." [18] Just because haridra hasn't shown up in the urine, blood or plasma, doesn't mean it's confined to the intestine. Perhaps once in systemic circulation the compound changes or is picked up by different organs resulting in a low concentration of CUR in the blood, plasma and urine. It would be helpful to conduct a study that could confirm the concentration of CUR in the intestine and fecal matter after high dosages. With the growing trend of turmeric studies, we will soon gain a deeper understanding of the many benefits of this amazing herb.
 
Even with all the recent studies, thousands of years of use are evidence that turmeric is a priceless resource. It is an essential part of everyone's health. Used in preventative measures and ongoing treatment, it has countless uses and applications. Its is no wonder that nisa has been so prized for so long in India and other eastern cultures. Through it's culinary applications and medicinal uses, golden goddess has become an integral part of the survival of human health. Now readily available around the world, it is being used more and more. The bright orange color of turmeric can be spotted wherever you go even when you may not recognize it by name.
 

Bibliography

1/3. Dr. Gyanendra Pandey. "Chowkhamba Krishnadas Academy." Krishnadas Ayurveda (K.A.S.) Series48. "Dravyaguna Vijnana." Part - 1. Page 737-745. "Haridra." Chowkhamba Press, Varanasi. Oriental Publishers & Distributors. 2005
 
2. Chan, E.W.C. et al.; Lim, Y; Wong, S; Lim, K; Tan, S; Lianto, F; Yong, M (2009). "Effects of different drying methods on the antioxidant properties of leaves and tea of ginger species". Food Chemistry 113 (1): 166-172.doi:10.1016/j.foodchem.2008.07.090.
 
4. [usda.gov]
Plants. USDA. Plant Profile. Curcuma Longa L. common turmeric
 
5. [www.wikipedia.org]
article. turmeric. (2)composition
 
6. Gernot Katzer's Spice Pages. "Turmeric". Etymology. Last Modification - 19 Mar. 1999 Web. 24 Sept. 2012 <http://www.uni-graz.at/-katzer/engl/Curc_lon.html>
 
7. [www.wikipedia.org] article. turmeric. (1.5) dye
 
8/9. [www.wikipedia.org]
article. turmeric. (1.1) culinary uses
 
10. Usha Lad & Dr. Vasant Lad. Ayurvedic Cooking for Self-Healing. Second Edition. Page 215-216. The Ayurvedic Press, Albuquerque 87112. Copyright 1994, 2009
 
11. Dr. David Frawley and Dr. Vasant Lad. The Yoga of Herbs. Second Edition. Page 149. Lotus Press Twin Lakes, Wisconsin. Copyright 1986, 2001
 
12. Dr. Gyanendra Pandey. "Chowkhamba Krishnadas Academy." Krishnadas Ayurveda (K.A.S.) Series48. "Dravyaguna Vijnana." Part - 1. Page 737-745. "Haridra." Chowkhamba Press, Varanasi. Oriental Publishers & Distributors. 2005
 
13. Dr. Gyanendra Pandey. "Chowkhamba Krishnadas Academy." Krishnadas Ayurveda (K.A.S.) Series48. "Dravyaguna Vijnana." Part - 1. Page 737-745. "Haridra." Chowkhamba Press, Varanasi. Oriental Publishers & Distributors. 2005
 
14. Dr. Vasant Lad. "Ayurveda The Science of Self-Healing." Page 160. "Muscle Strain & Pain." Lotus Press Twin Lakes, Wisconsin.
 
15. Dr. Vasant Lad. "Ayurveda The Science of Self-Healing." Page 141. "Turmeric." Lotus Press Twin Lakes, Wisconsin.
 
16. Usha Lad & Dr. Vasant Lad. Ayurvedic Cooking for Self-Healing. Second Edition. Page 215-216. The Ayurvedic Press, Albuquerque 87112. Copyright 1994, 2009
 
17. Dr. Gyanendra Pandey. "Chowkhamba Krishnadas Academy." Krishnadas Ayurveda (K.A.S.) Series48. "Dravyaguna Vijnana." Part - 1. Page 737-745. "Haridra." Chowkhamba Press, Varanasi. Oriental Publishers & Distributors. 2005
 
18. [Pub.Med.gov - US National Library of Medicine - National Institutes of Health]  Biofactors. 2012 Sep 20. doi: 10.1002/biof.1042. [Epub ahead of print]
"Curcumin uptake and metabolism."
Metzler M, Pfeiffer E, Schulz SI, Dempe JS. Source
Department of Chemistry and Biosciences, Chair of Food Chemistry, Karlsruhe Institute of Technology (KIT), Adenauerring 20a, D-76131 Karlsruhe, Germany.
Manfred.metzler@kit.edu.
 
19. [Pub.Med.gov - US National Library of Medicine - National Institutes of Health]  PLoS One. 2012;7(9):e44650. Epub 2012 Sep 12.
"Curcuma longa Extract Exerts a Myorelaxant Effect on the Ileum and Colon in a Mouse Experimental Colitis Model, Independent of the Anti-Inflammatory Effect."
Aldini R, Budriesi R, Roda G, Micucci M, Ioan P, D'Errico-Grigioni A, Sartini A, Guidetti E,  Marocchi M, Cevenini M, Rosini F, Montagnani M, Chiarini A, Mazzella G.
Source
Ospedale Policlinico S.Orsola and Dipartimento di Scienza dei Metalli, Elettrochimica e Tecniche Chimiche, Universita degli Studi di Bologna, Bologna, Italy.
 
20. [Pub.Med.gov - US National Library of Medicine - National Institutes of Health]
Food Chem. 2012 Dec 15;135(4):2638-42. doi: 10.1016/j.foodchem.2012.06.110. Epub 2012 Jul 13.
"Discovering Bisdemethoxycurcumin from Curcuma longa rhizome as a potent small molecule inhibitor of human pancreatic a-amylase, a target for type-2 diabetes."  Ponnusamy S, Zinjarde S, Bhargava S, Rajamohanan PR, Ravikumar A.
Source
Institute of Bioinformatics and Biotechnology, University of Pune, Pune 411 007, Maharashtra, India.
 
21. [Pub.Med.gov - US National Library of Medicine - National Institutes of Health]
Future Med Chem. 2012 Sep;4(13):1751-61.
"Natural products as a rich source of tau-targeting drugs for Alzheimer's disease."  Calcul L, Zhang B, Jinwal UK, Dickey CA, Baker BJ.
Source
Department of Chemistry & Center for Drug Discovery & Innovation, University of South Florida, FL, USA.
 
22. [www.cancer.org - Find Support & Treatment - Treatments and Side Effects - Complementary and Alternative Medicine - Herbs, Vitamins, and Minerals] "Turmeric"
Last Medical Review: 11/28/2008 _ Last Revised: 11/28/2008 Web. 24 Sept. 2012
 
23. [Pub.Med.gov - US National Library of Medicine - National Institutes of Health]  Nutr Cancer. 2010;62(7):919-30.
"Curcumin, the golden spice from Indian saffron, is a chemosensitizer and radiosensitizer for tumors and chemoprotector and radioprotector for normal organs."
Goel A, Aggarwal BB. Source
Department of Internal Medicine, Baylor University Medical Center, Dallas, Texas, USA. Web. 25 Sept. 2012 <http://www.ncbi.nlm.nih.gov/pubmed/20924967>
 
 

Triphala: Ayurvedic formula for the Modern World. By: Rodrigo M. Pocius

I. Introduction to Triphala
II. Constituents
  • 1. Amalaki
    • A) Botanical Description
    • B) Ayurvedic Description
  • 2. Bibhitaki
    • A) Botanical Description
    • B) Ayurvedic Description
  • 3. Haritaki
    • A) Botanical Description
    • B) Ayurvedic Description
III. Triphala: General uses and other benefits
  • 1. Digestion
  • 2. Gouty Arthritis
  • 3. Healing compound for wounds
  • 4. Anti-oxidant and free radical scavenger
  • 5.Anti Cancer Compound
  • 6.Protection against Gamma Radiation
IV. Conclusion
V. Abstracts
VI. Photo Credits
  • End notes 

See PDF Article